Hoogle+: **Program Synthesis by Type-Guided Abstraction Refinement**

<u>Zheng Guo</u>, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, Nadia Polikarpova University of California San Diego

01 Problem: Component-Based Synthesis

- Running example
- Previous solution: SyPet

02 Challenge: Polymorphism

Search space explosion

03 Solution: Type-Guided Abstraction Refinement

- Abstraction
- Refinement
- Evaluation

04 Hoogle+: More Features

01 Problem: Component-Based Synthesis Running example

Previous solution: SyPet

O2 Challenge: Polymorphism Search space explosion

03 Solution: Type-Guided Abstraction Refinement

- Abstraction
- Refinement
- Evaluation

04 Hoogle+: More Features

Component-Based Synthesis Example

otional values	Desired result	
Nothing, Just 'c', Just 'd']	'b'	
ng, Nothing, Nothing]	0	
ybe a]	a	

Component-Based Synthesis • Example

Default value List of optional values **Desired result 'a' 'b'** [Nothing, Just 'b', Nothing, Just 'c', Just 'd'] [Nothing, Nothing, Nothing, Nothing] 0 0

d: a \rightarrow xs: [Maybe a] \rightarrow a

Component-Based Synthesis Example

Hoogλe

Search for...

Packages

- 😑 is:exact 🕀
- 😑 is:package 🕀

set:haskell-platform

package base

Basic libraries This package contains the

package bytestring

Fast, compact, strict and lazy byte string bytes or 8-bit characters. It is suitable for

package containers

Assorted concrete container types This package provides with examples of con

package text

An efficient packed Unicode text type. A time and appear officient mapper. This packed the packet officient mapper. This packet is a set of the packet of

		🖈 🔒 Ir	ncognito :
	set:haskell-platforr	n 🔹 Searc	:h
N			
ne Standard Haskell Pr	elude and its support libraries	s, and a large collection	on of useful
igs with a list interface / or high performance us	An efficient compact, immutate both in terms of large data	ble byte string type (b a quantities, or high sr	oth strict an beed require
nmon operations see th	e containers introduction. The	nentations of various in the declared cost of ea	mmutable co ach operation
An efficient packed, imr	nutable Unicode text type (be	oth strict and lazy), wi	th a powerfu

Component-Based Synthesis Example

Solution: \d xs -> **fromMaybe** d (**listToMaybe** (**catMaybes** xs))

Component-Based Synthesis - Example

Solution: \d xs -> **fromMaybe** d (**listToMaybe** (**catMaybes** xs))

01 Problem: Component-Based Synthesis

- Running example
- **Previous solution: SyPet**
- **O2 Challenge: Polymorphism** Search space explosion
- **03** Solution: Type-Guided Abstraction Refinement
 - Abstraction
 - Refinement
 - Evaluation
- 04 Hoogle+: More Features

Previous Solution Petri net-Based Search

fromMaybe

Feng et al. POPL '17

fromMaybe :: a -> Maybe a -> a

Previous Solution -Petri net-Based Search

Feng et al. POPL '17

fromMaybe :: a -> Maybe a -> a

Previous Solution - Petri net-Based Search

Feng et al. POPL '17

fromMaybe :: a -> Maybe a -> a

Previous Solution - Petri net-Based Search

Feng et al. POPL '17

Type Query

d: a -> xs: [Maybe a] -> a

Previous Solution Petri net-Based Search

Feng et al. POPL '17

Type Query

d: a -> xs: [Maybe a] -> a

_ '17 Query **] -> a**

Previous Solution - Petri net-Based Search

Feng et al. POPL '17

Type Query

d: a -> xs: [Maybe a] -> a

catMaybes xs

Previous Solution Petri net-Based Search

listToMaybe (catMaybes xs)

Feng et al. POPL '17

Type Query

d: a -> xs: [Maybe a] -> a

_ '17 Query **] -> a**

Previous Solution Petri net-Based Search

SOLUTION: \d xs -> **fromMaybe** d (**listToMaybe** (**catMaybes** xs))

Feng et al. POPL '17

Type Query

d: a -> xs: [Maybe a] -> a

_ '17 Query **] -> a**

01 Problem: Component-Based Synthesis Running example Previous solution: SyPet

02 Challenge: Polymorphism Search space explosion

03 Solution: Type-Guided Abstraction Refinement

- Abstraction
- Refinement
- Evaluation

04 Hoogle+: More Features

Challenge Polymorphic components

Challenge Polymorphic components

from Maybe :: $\forall \alpha. \alpha \rightarrow \text{Maybe } \alpha \rightarrow \alpha$

Challenge Polymorphic components

O1 Problem: Component-Based Synthesis Running example

Previous solution: SyPet

O2 Challenge: Polymorphism Search space explosion

03 Solution: Type-Guided Abstraction Refinement Abstraction

- Refinement
- Evaluation

04 Hoogle+: More Features

SOLUTION: \d xs -> **fromMaybe** d (**listToMaybe** (**catMaybes** xs))

Type Query

d: a -> xs: [Maybe a] -> a

SOLUTION: \d xs -> **fromMaybe** d (**listToMaybe** (**catMaybes** xs))

Type Query

d: a -> xs: [Maybe a] -> a

SOLUTION: \d xs -> **fromMaybe** d (**listToMaybe** (**catMaybes** xs))

Type Query

d: a -> xs: [Maybe a] -> a

SOLUTION: \d xs -> fromMaybe d (listToMaybe (catMaybes xs))

Type Query

d: a -> xs: [Maybe a] -> a

SOLUTION: \d xs -> **fromMaybe** d (**catMaybes** xs)

Type Query

d: a -> xs: [Maybe a] -> a

Type Query

d: a -> xs: [Maybe a] -> a

Spurious Program: \d xs -> **fromMaybe** d (**catMaybes** xs)

AST of the program Type checking of the program

Type Query d: a -> xs: [Maybe a] -> a

xs :: [Maybe a] catMaybes :: $\forall \alpha$. [Maybe α] -> [α]

catMaybes xs :: [a]

Spurious Program: \d xs -> **fromMaybe** d (**catMaybes** xs)

Type Query

d: a -> xs: [Maybe a] -> a

O1 Problem: Component-Based Synthesis Running example

Previous solution: SyPet

O2 Challenge: Polymorphism Search space explosion

03 Solution: Type-Guided Abstraction Refinement

Abstraction

Refinement

- Evaluation
- **04 Hoogle+: More Features**

Type-Guided Abstraction Refinement Type abstraction refinement

Spurious Program: \d xs -> **fromMaybe** d (**catMaybes** xs)

AST of the program Type checking of the program

Type Query

d: a -> xs: [Maybe a] -> a

O1 Problem: Component-Based Synthesis Running example

Previous solution: SyPet

O2 Challenge: Polymorphism Search space explosion

03 Solution: Type-Guided Abstraction Refinement

- Abstraction
- Refinement
- **Evaluation**

04 Hoogle+: More Features

Benchmarks

24 benchmarks from Hoogle
6 benchmarks from StackOverflow
14 benchmarks curated by us

Type-Guided Abstraction Refinement Evaluation

Type-Guided Abstraction Refinement Evaluation

Type-Guided Abstraction Refinement Evaluation

Too many refinements **b** Too large petri net No refinement Poor at hard queries

Query: f: (a -> b) -> g: (a -> c) -> x: a -> (b, c) **Solution**: $\f g x \rightarrow (f x, g x)$ Bounded refinements 2s!

01 Problem: Component-Based Synthesis Running example

Previous solution: SyPet

02 Challenge: Polymorphism Search space explosion

03 Solution: Type-Guided Abstraction Refinement

- Abstraction
- Refinement
- Evaluation

04 Hoogle+: More Features

Hoogle+ • Support for real-world Haskell

More advanced Haskell features

higher-order functions, type classes, etc.

Filter out uninteresting solutions

e.g. \d xs -> fromLeft d (Right xs) always returns d

01 Problem: Component-Based Synthesis

- Running example
- Previous solution: SyPet

02 Challenge: Polymorphism

Search space explosion

03 Solution: Type-Guided Abstraction Refinement

- Abstraction
- Refinement
- Evaluation

04 Hoogle+: More Features