| Hoogle+:

Program Synthesis by Type-Guided Abstraction Refinement

Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, Nadia Polikarpova

University of California San Diego

Outline

01 Problem: Component-Based Synthesis
Running example
Previous solution: SyPet

02 Challenge: Polymorphism

Search space explosion

03 Solution: Type-Guided Abstraction Refinement

Abstraction
Refinement
Evaluation

04 Hoogle+: More Features

Outline

01 Problem: Component-Based Synthesis
Running example

‘ Component-Based Synthesis
Example

Default value List of optional values Desired result
‘a’ [Nothing, Just ‘b’ Nothing, Just‘c, Just‘d’] ‘b’
0 [Nothing, Nothing, Nothing, Nothing] 0

d: a Xs: [Maybe aj a

‘ Component-Based Synthesis
Example

Default value List of optional values Desired result
‘a’ [Nothing, Just ‘b’ Nothing, Just‘c, Just‘d’] ‘b’
0 [Nothing, Nothing, Nothing, Nothing] 0

d:a — xs:[Maybea] — a

Component-Based Synthesis

Example

set:haskell-platform - Hoogle X @ Hoogle+ Demo

& hoogle.haskell.org/:

HcogAe Search for... set:haskell-platform * | Search

set:haskell-platform \
Packages

- is:exact + package base

— Is:package + + Basic libraries This package contains the Standard Haskell Prelude and its support libraries, and a large collection of useful

package bytestring

*l Fast, compact, strict and lazy byte strings with a list interface An efficient compact, immutable byte string type (both strict an
hvtes nr K-hit characters It is s1iitahle far hinh nerformance 11se hoth in terms of larae data nuniantities or hinh sneed reallire

package containers

+) Assorted concrete container tvpes This packaae contains efficient aeneral-purpose implementations of various immutable ¢
nackaaoe nrovides with exambnles of common onerations see the containers introduction. The declarecd cost of each oneration

package text

+ An efficient packed Unicode text type. An efficient packed, immutable Unicode text type (both strict arjd lazy), with a powerfu

aeakiaasad fOr narformance critin
|

‘ Component-Based Synthesis
Example

Solution: \d xs -> d (listToMaybe (catMaybes xs))

catMaybes

[Nothing, Just ‘b’ Nothing, Just‘c, Just‘d’] [‘b)‘c,'d"]

listToMaybe

‘ Component-Based Synthesis
Example

d: Int -> xs: [Maybe Int] -> Int

%) ?

v|v

Solution: \d xs -> d (listToMaybe (catMaybes xs))

Outline

01 Problem: Component-Based Synthesis

Previous solution: SyPet

‘ Component-Based Synthesis
Synthesis to the rescue

......... .>
......... .>
Type Query —— ———
ey Synthesizer Result Program

Components

Feng et al. POPL "17

‘ Previous Solution
Petri net-Based Search

fromMaybe :: a -> Maybe a-> a

fromMaybe
O Types

@ Goal type
—I— Components

@® Tokens

Feng et al. POPL "17

‘ Previous Solution
Petri net-Based Search

. fromMaybe :: a -> Maybe a -> a
d

O Types
@ Goal type

Maybe d . —I— Components

@® Tokens

Feng et al. POPL "17

‘ Previous Solution
Petri net-Based Search
fromMaybe :: a -> Maybe a -> a

O e
@ Goal type
—I— Components

@® Tokens

Feng et al. POPL "17

‘ Previous Solution T
Petri net-Based Search ype Query

d: a-> xs:[Maybe a] -> a

a <— ‘ [a]

fromMaybe listToMaybe O
Types
@ Goal type

Maybe d (— ° [Maybe a] —I— Components

@® Tokens

Feng et al. POPL "17

‘ Previous Solution T
Petri net-Based Search ype Query

d: a-> xs:[Maybe a] -> a

. Q) =
fromMaybe listToMaybe

Maybe a <— ° [Maybe a]

Feng et al. POPL 17

‘ Previous Solution T
Petri net-Based Search ype Query

d: a-> xs:[Maybe a] -> a

catMaybes xs

¥O Ok
fromMaybe listToMaybe catMaybes
Maybe a .

[Maybe a]

Feng et al. POPL 17
‘ Previous Solution T
Petri net-Based Search ype Query

d: a-> xs:[Maybe a] -> a

listToMaybe (catMaybes xs)

¥o O

fromMaybe listToMaybe catMaybes

Maybe a °

Feng et al. POPL 17

‘ Previous Solution T
Petri net-Based Search ype Query

d: a-> xs:[Maybe a] -> a

SOLUTION: \d xs -> fromMaybe d (listToMaybe (catiMaybes xs))

¥o O

fromMaybe listToMaybe catMaybes

Maybe a .

Outline

02 Challenge: Polymorphism

| Search space explosion

Fhlallenge
Polymorphic components

listToMaybe catMaybes *

. [Maybe a]

[a]
. fromMaybe :: a -> Maybe a-> a

fromMaybe :: Va. a -> Maybe o -> o

Fl!nallenge
Polymorphic components

fromMaybe :: Va. a-> Maybe o -> o

Maybe (Maybe (Maybe a))

Maybe (Maybe a)

Fl!nallenge
Polymorphic components

Maybe (Maybe a)

fromMaybe ‘- fromMaybe
fromMaybe ‘ listToMaybe

(— o o o

Maybe (Maybe (Maybe a))

Maybe a Maybe [a] Maybe [[a]]

YO O
[Maybe a]

¢
a]T

[
[[a]]

listToMaybe

listToMaybe

Fl!nallenge
Polymorphic components

Outline

03 Solution: Type-Guided Abstraction Refinement

Abstraction

‘ Type-Guided Abstraction Refinement
Abstract types

Maybe (Maybe a)

‘ Type-Guided Abstraction Refinement
Abstract petri net

Maybe (Maybe a)

fromMaybe ‘- fromMaybe
fromMaybe ‘ listToMaybe

(— o o o

Maybe (Maybe (Maybe a))

Maybe a Maybe [a] Maybe [[a]]

YO O
[Maybe a]

¢
a]T

[
[[a]]

listToMaybe

listToMaybe

A

fromMaybe

‘ Type-Guided Abstraction Refinement

bstract petri net
Maybe (Maybe a)

fromMaybe ‘- fromMaybe
listToMaybe

T
Maybe a Maybe [a]

YO O
[Maybe a]

¢
a]T

listToMaybe

[
[[a]]

(— o o o

Maybe (Maybe (Maybe a))

Maybe [[a]]

listToMaybe

Type Query
‘ Type-Guided Abstraction Refinement d:a->xs:[Maybe a] ->a
Abstract petri net

head

fromMaybe [~ |/listToMaybe

/ catMaybes
fromMaybe fromMaybe
. ' listToMaybe
/ catMaybes
OO Ny

a [Maybe a]

Type Query

‘ Type-Guided Abstraction Refinement d:a ->xs: [Maybe a] -> a
Abstract petri net
SOLUTION: \d xs -> fromMaybe d (listToMaybe (XS))
‘ head

fromMaybe [| ~ _|/listToMaybe

/ catMaybes
fromMaybe fromMaybe
. ' listToMaybe
/ catMaybes
O A

a [Maybe a]

Type Query

‘ Type-Guided Abstraction Refinement d:a ->xs: [Maybe a] -> a
Abstract petri net
SOLUTION: \d xs -> fromMaybe d (listToMaybe (XS))
‘ head

fromMaybe [| ~ _|/listToMaybe

/ catMaybes
fromMaybe fromMaybe

-
oo

a [Maybe a]

Type Query
‘ Type-Guided Abstraction Refinement d:a->xs:[Maybe a] ->a
Abstract petri net

SOLUTION: \d xs -> fromMaybe d (listToMaybe (catMaybes xs))

T
fromMaybe -0_ listToMaybe

fromMaybe fromMaybe

-
ofille

a [Maybe a]

catMaybes

Type Query
‘ Type-Guided Abstraction Refinement d:a->xs:[Maybe a] ->a
Abstract petri net

SOLUTION: \d xs -> fromMaybe d (listToMaybe (catMaybes xs))

T
fromMaybe -0‘ listToMaybe

fromMaybe fromMaybe

a [Maybe a]

catMaybes

Type Query
‘ Type-Guided Abstraction Refinement d:a->xs:[Maybe a] ->a
Abstract petri net

head

.
fromMaybe -‘- / listToMaybe

/ catMaybes
fromMaybe fromMaybe

-
oo

a [Maybe a]

Type Query

‘ Type-Guided Abstraction Refinement d:a ->xs: [Maybe a] -> a
Abstract petri net
SOLUTION: \d xs -> fromMaybe d (XS)
¢ head

fromMaybe [| ~ _|/listToMaybe

/ catMaybes
fromMaybe fromMaybe

a [Maybe a]

Type Query

‘ Type-Guided Abstraction Refinement d:a ->xs: [Maybe a] -> a
Abstract petri net
d: Int -> xs: [Maybe Int] -> Int
HE

©

v|v

Solution: \d xs -> fromMaybe d (XS)

Type Query
‘ Type-Guided Abstraction Refinement d:a->xs:[Maybe a] ->a
Abstract petri net

Spurious Program: \d xs -> fromMaybe d (XS)

fromMaybe

catMaybes :: Va.[Maybe a] -> [a] xs:: [Maybe a]

‘ catMaybes xs :: [al

AST of the program Type checking of the program

Type Query
‘ Type-Guided Abstraction Refinement d:a->xs:[Maybe a] ->a
Abstract petri net

Spurious Program: \d xs -> fromMaybe d (XS)

fromMaybe

AST of the program Type checking of the program

‘ Type-Guided Abstraction Refinement

TyGAR Workflow

CheckiOK
Checker RS E-»

Type

Result
Program

""" > : v|v
Query Type =5 : ‘

2. Abstract Type Error
Reachability M
:::: N e
: ew
: No Path Abstraction

Outline

03 Solution: Type-Guided Abstraction Refinement

Refinement

Type Query
‘ Type-Guided Abstraction Refinement d: a->xs: [Maybe a] -> a
Type abstraction refinement

Spurious Program: \d xs -> fromMaybe d (XS)

fromMaybe

AST of the program Type checking of the program

‘ Type-Guided Abstraction Refinement
Refined abstract petri net

listToMaybe listToMaybe
T

Type Query

d:a-> xs: [Maybe a] -> a

* Spurious Program:
fromMaybe ‘ fromMaybe \d xs -> fromMaybe d (s)
T
listToMaybe |
o
[Maybe a]

:

‘ Type-Guided Abstraction Refinement
Refined abstract petri net

listToMaybe listToMaybe
T

Type Query

d:a-> xs: [Maybe a] -> a

* Spurious Program:
fromMaybe ‘ fromMaybe \d xs -> fromMaybe d (s)
T
listToMaybe |
o
[Maybe a]

@

[7]

Type Query
‘ Type-Guided Abstraction Refinement d: a->xs: [Maybe a] -> a
Refined abstract petri net

listToMaybe listToMaybe
a
T
* Spurious Program:
fromMaybe 0 fromMaybe \d xs -> fromMaybe d (s)
T
listToMaybe |
[Maybe a]
O

[7]

‘ Type-Guided Abstraction Refinement
Refined abstract petri net

listToMaybe listToMaybe
T

Type Query

d:a-> xs: [Maybe a] -> a

| Solution:
() \d s -> fromMaybe d (listToMaybe)
T

listToMaybe |
o

[Maybe a]

@

[7]

‘ Type-Guided Abstraction Refinement
Refined abstract petri net

listToMaybe listToMaybe
T

Type Query

d:a-> xs: [Maybe a] -> a

| Solution:
() \d s -> fromMaybe d (listToMaybe)
T

listToMaybe |
[Maybe a]
@

[7]

‘ Type-Guided Abstraction Refinement
Refined abstract petri net

listToMaybe listToMaybe

Type Query

d:a-> xs: [Maybe a] -> a

| Solution:
() \d s -> fromMaybe d (listToMaybe)
T

fromMaybe | (AU ()
[Maybe a]
O

[7]

Type Query

‘ Type-Guided Abstraction Refinement d:a->xs: [Maybe a] ->a

Refined abstract petri net

listToMaybe listToMaybe
‘ Solution:
fromMaybe ° fromMaybe | | \g xs-> fromMaybe d (listToMaybe (
T

fromMaybe | (AU (>
[Maybe a]
@

[7]

XS))

‘ Type-Guided Abstraction Refinement

TyGAR Workflow

CheckiOK

Checker T

Type

Result
Program

..... = : v v ““"‘
Query Type — > : ‘

2. Abstract Type Error
Reachability M
:::: N e
: ew
: No Path Abstraction

Outline

03 Solution: Type-Guided Abstraction Refinement

Evaluation

‘ Type-Guided Abstraction Refinement
Evaluation

B o IO

291 components . 24 benchmarks from Hoogle
I 12 popular Haskell library modules 6 benchmarks from StackOverflow

. 14 benchmarks curated by us

of benchmarks

‘ Type-Guided Abstraction Refinement
Evaluation

Abstraction w/
Refinement

Too many refinements * Too large petri net

N
S B

W
-

of benchmarks

‘ Type-Guided Abstraction Refinement
Evaluation

Abstraction w/ Abstraction w/o
Refinement Refinement

Too many refinements * Too large petri net

No refinement = Poor at hard queries

Query:f:(a->b)->g:(@a->¢c)->x:a-> (b, ¢
Solution: \f g x -> (f x, g X)
TIMEOUT:

of benchmarks

‘ Type-Guided Abstraction Refinement
Evaluation

Too many refinements * Too large petri net

No refinement = Poor at hard queries

Query:f:(a->b)->g:(@a->¢c)->x:a-> (b, ¢)

Solution: \f g x-> (f x, g x) _ments 26\

Abstraction w/ Abstraction w/o Abstraction w

Refinement

Refinement

efin
nded Y
Bounded Refinement Bou

Outline |
|

04 Hoogle+: More Features

Hoogle+
|-_S|IJpport for real-world Haskell

More advanced Haskell features

higher-order functions, type classes, etc.

Filter out uninteresting solutions

e.g. \d xs -> fromLeft d (Right xs) always returns d

Outline

01 Problem: Component-Based Synthesis
Running example
Previous solution: SyPet

02 Challenge: Polymorphism

Search space explosion

03 Solution: Type-Guided Abstraction Refinement

Abstraction
Refinement
Evaluation

04 Hoogle+: More Features

