
205

Digging for Fold: Synthesis-Aided API Discovery for Haskell

MICHAEL B. JAMES, UC San Diego, USA
ZHENGGUO, UC San Diego, USA
ZITENGWANG, UC San Diego, USA
SHIVANI DOSHI, UC San Diego, USA
HILA PELEG, UC San Diego, USA
RANJIT JHALA, UC San Diego, USA
NADIA POLIKARPOVA, UC San Diego, USA

We presentHoogle+, a web-based API discovery tool for Haskell. AHoogle+ user can specify a programming
taskusing either a type, a set of input-output tests, or both.Givena specification, the tool returns a list ofmatching
programs composed from functions in popular Haskell libraries, and annotated with automatically-generated
examples of their behavior. These features of Hoogle+ are powered by three novel techniques. First, to enable
efficient type-directed synthesis from tests only, we develop an algorithm that infers likely type specifications
from tests. Second, to return high-quality programs even with ambiguous specifications, we develop a technique
that automatically eliminates meaningless and repetitive synthesis results. Finally, we show how to extend this
elimination technique to automatically generate informative inputs that can be used to demonstrate program
behavior to the user. To evaluate the effectiveness of Hoogle+ comparedwith traditional API search techniques,
we perform a user studywith 30 participants of varying Haskell proficiency. The study shows that programmers
equipped withHoogle+ generally solve tasks faster and were able to solve 50%more tasks overall.

CCS Concepts: •Human-centered computing→ Interactive systems and tools; • Theory of computa-

tion→Automated reasoning; Type theory.

Additional KeyWords and Phrases: Program Synthesis, Type Inference, Human-Computer Interaction

ACMReference Format:

Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova. 2020.
Digging for Fold: Synthesis-Aided API Discovery for Haskell. Proc. ACM Program. Lang. 4, OOPSLA, Article 205
(November 2020), 27 pages. https://doi.org/10.1145/3428273

1 INTRODUCTION
Consider the task of implementing a function dedup that eliminates adjacent duplicate elements
from a list (e.g. dedup [1,1,2,2,1] = [1,2,1]). In a functional language like Haskell, this task can
be accomplished without explicit recursion, simply by using functions from the standard library:

dedup xs = map head (group xs)

This solution first calls group on the input list to split it into clusters of adjacent equal elements
(e.g. group [1,1,2,2,1] = [[1,1], [2,2], [1]]), and then maps over the result to extract the head

Authors’ addresses: Michael B. James, UC San Diego, USA, m3james@ucsd.edu; Zheng Guo, UC San Diego, USA, zhg069@
ucsd.edu; ZitengWang, UC San Diego, USA, ziw329@ucsd.edu; Shivani Doshi, UC San Diego, USA, s1doshi@ucsd.edu; Hila
Peleg, UC San Diego, USA, hpeleg@eng.ucsd.edu; Ranjit Jhala, UC San Diego, USA, jhala@cs.ucsd.edu; Nadia Polikarpova,
UC San Diego, USA, npolikarpova@ucsd.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact
the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART205
https://doi.org/10.1145/3428273

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

https://doi.org/10.1145/3428273
https://doi.org/10.1145/3428273

205:2 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

Fig. 1. InHoogle+, the user can search for dedup using its type, one or more tests, or both.

of each cluster. This implementation is not only shorter than a recursive one, but also more idiomatic.
But how is the programmer to discover this solution?

The need for such discovery is particularly acute in functional languages, whose expressive types
and higher-order functions make libraries extremely versatile and compositional. As a result, discov-
ery is especially useful as many computations can be expressed by gluing components from existing
libraries. At the same time, discovery is especially difficult as library functions are very general and
can be composed in myriad ways. Online help forums like StackOverflow only contain solutions
for common programming tasks, and are generally less helpful outside of a handful of most popular
programming languages. As an alternative, Haskell programmers often turn to the Hoogle API
search engine [Mitchell 2004] to search for library functions by their type; butHoogle only helps
if there is a single library function that does the job, which is not the case for dedupwhere we must
compose multiple functions into a snippet. Our goal is to bridge this gap and build an API discovery
tool for Haskell that helps programmers find snippets like our implementation of dedup.
Type-Directed Component-Based Synthesis. The core technical challenge for API discovery is
how to efficiently search the space of all snippets when the API library has hundreds or thousands
of functions. Component-based program synthesis techniques [Feng et al. 2017; Guo et al. 2020; Gvero
et al. 2013; Mandelin et al. 2005] tackle this challenge using a type-directed approach. In particu-
lar, our prior work on synthesis by type-guided abstraction refinement (TyGAR) [Guo et al. 2020]
demonstrates how to efficiently perform type-directed search in the presence of polymorphism and
higher-order functions, which are ubiquitous in functional languages. In this work we build upon
the TyGAR search algorithm to implement an API discovery tool we dubHoogle+.
Challenges.Although the core search algorithm behindHoogle+ is not new, turning this algorithm
into into a practical API discovery tool required overcoming three important challenges.

1. Specification: The first challenge is that of specification: how should the programmer com-
municate their intent to the synthesizer? In Haskell, types are a powerful and concise way to specify
program behavior thanks to parametric polymorphism, which significantly restricts the space of
possible implementations of a given type. Types are the preferred mode of specification forHoogle
users and moreover, TyGAR requires a type in order to perform snippet search. The flip side of
expressive types is that aHaskell beginnermight not immediately know themost appropriate type for
the function they want to implement. Consider dedup: its most general type is Eq a => [a] → [a];
this type is polymorphic in the list element, but restricts these elements to be equatable, because
dedup has to compare them for equality. When types become non-trivial, it is more natural for a user
to specify their intent using input-output tests. Based on these observations, we designHoogle+ to
allow three different modes of intent specification: only types, only tests, or both (see Fig. 1). To enable

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:3

Fig. 2. Candidate types for dedup inferred from the test "abaa" → "aba".

type-directed search when the user only provides tests, we develop an algorithm to infer types from
the tests. Note that there might be many types of different levels of generality that are consistent
with the tests, soHoogle+ presents a set of likely type specifications to the user, as shown in Fig. 2.

2. Elimination: Specifications are often ambiguous, especially when the user provides the type
signature alone. In this case TyGARmight return many irrelevant candidate programs. For example,
searching for dedup by its type might generate programs like \xs → [] (which always returns the
empty list) or \xs → head [] (which always crashes by taking the head of an empty list). Intuitively,
these programs are clearly uninteresting, and we shouldn’t need additional user input to eliminate
them from the synthesis results. To address this challenge, we have developed an efficient heuristic
for identifying uninteresting candidates using property-based testing [Claessen and Hughes 2000;
Runciman et al. 2008].

3. Comprehension: Finally, once the candidate programs have been generated: how should the
programmer decide which, if any, synthesis result solves their problem? To facilitate comprehension
of a candidate program,Hoogle+ automatically generates several examples of its behavior as shown
in Fig. 3. Unfortunately, a naive exhaustive or random generation yields many uninformative ex-
amples. We show how to address this challenge by relying, once again, on property-based testing to
generate inputs with certain desirable qualities, such as examples of success and failure and examples
that differentiate this candidate from the rest.
Hoogle+.We have incorporated the three techniques described above together with the TyGAR
search algorithm into a web-based API discovery engine. Fig. 1 illustrates usingHoogle+ for our
running example: the programmer has specified theHaskell type signature for dedup and one example
of its behavior. Fig. 3 shows the list of candidate programs returned byHoogle+ (with the correct
solution at the top).
User study.Does synthesis-aided API discovery actually help programmers solve their tasks com-
pared to a more traditional workflow?We evaluate this question by conducting a user study with

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:4 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

Fig. 3. Two candidate solutions for dedup. The behavior of each solution is illustrated with both user-provided

and auto-generated examples.

30 participants of varying levels of Haskell proficiency. The participants were asked to solve various
programming tasks (including dedup) either usingHoogle+ or using a popular code searchworkflow
(Hoogle together with an interpreter). The study shows that Hoogle+ enables programmers to
solve tasks faster and increases their success rate in finding a correct solution by more than 50%.

Contributions. In summary, this paper makes the following contributions:

(1) Hoogle+, thefirst practicalAPIdiscovery tool for a functional languagewithhigher-order func-
tions and polymorphic types; the tools accepts specifications in the form of types, input-output
tests, or both, and displays candidate snippets together with examples of their behavior (Sec. 2).

(2) A new algorithm that infers likely type specifications from tests (Sec. 4).
(3) A new technique for automatically eliminating uninteresting synthesis results using property-

based testing (see Sec. 5.1).
(4) A new technique for automatically generating examples of program behavior using property-

based testing (see Sec. 5.2).
(5) The first user study evaluating the usefulness of synthesis-aided API discovery in a functional

language (Sec. 7).

2 OVERVIEW
We begin with an overview of the challenges to practical synthesis-aided API discovery and show
howHoogle+ overcomes these challenges.We postpone the description of the core synthesis engine,
type-guided abstraction refinement (TyGAR), to Sec. 3.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:5

2.1 Specification
Consider a user tasked with implementing our running example dedup, and assume that the user has
a test in mind: on input "abaa" the snippet should return "aba"1. In order to make use of the TyGAR
synthesis engine, however, the user also needs to provide a type signature for dedup, which the engine
uses to efficiently navigate the search space.
Problem. Our user study shows that Haskell beginners often do not know the most appropriate
type signature for the snippet that they are looking to implement (Sec. 7). In particular, typeclass
constraints are particularly tricky for beginners. For example, the appropriate type specification
for dedup is Eq a => [a] → [a], where the constraint Eq a => allows using equality checks on a

to remove the duplicates, but the need for this constraint is not obvious from the task description.
Consequently, the user might search using the overly general type [a] → [a], which will prove
fruitless (the dedup snippet does not check against this type). Alternatively, the user might search
an overly specific type, like [Char] → [Char], which will yield too many results to be useful.
Solution: Types from Tests. We address the specification problem with a novel technique that
automatically infers likely type specifications from tests. In our running example, the user enters
their intended test "abaa" → "aba" and leaves the type specification blank.Hoogle+ then presents
the user with a list of up to 10 candidate types, as shown in Fig. 2. Notice that the correct type
Eq a => [a] → [a] is listed in position 5. When reminded of typeclass constraints explicitly, users
can often figure out which constraints they need.
Inferring likely type specifications is a difficult problem: as we show in Sec. 6.1, there can be

anywhere from a dozen to a few million types of different levels of generality consistent with a
given set of tests. To pick a few likely candidates, our inference algorithm incorporates two new
mechanisms: (1) a filtering mechanism eliminates candidate types that cannot be inhabited by a
meaningful program (e.g. the type [Char] → [a] is eliminated, because any program of this type
always returns the empty list) (2) a ranking mechanism that prioritizes simple and general types.
We describe our inference algorithm in detail in Sec. 4 and evaluate it empirically in Sec. 6.1.

2.2 Elimination
Now consider a scenario where a user is searching for dedup by only its type, Eq a => [a] → [a].
Problem: Meaningless and Duplicate Results. Type-only specifications are often highly ambigu-
ous: although polymorphic type signatures help narrow down the search space, there might still be
too many programs that check against a given type. Fortunately, many of these programs are clearly
uninteresting, and can be eliminated without requiring additional input from the user.
We have identified two main sources of uninteresting synthesis results.Meaningless programs

are those that crash or diverge on every input. For example, any program that contains the subex-
pression head [] is meaningless as it always crashes regardless of the input. The second source of
uninteresting synthesis results are duplicates, i.e. semantically equivalent programs. For example, one
candidate solution for dedupmay be \xs → init (head (group xs)) and the following one could be
\xs → tail (head (group xs)). The two candidates syntactically differ in that they take the prefix
(init) and suffix (tail) of the result of head (group xs). However, they are semantically equivalent
as the input to init and tail is always a non-empty list of identical values, e.g. init ['a', 'a']

and tail ['a', 'a'] are both equal to ['a']. Our goal is to eliminate meaningless and duplicate
programs from the output of Hoogle+ automatically.
Solution: Property-Based Testing. In principle, the problem of determining whether a program is
meaningful or whether two programs are equivalent is undecidable. In practice, however, it turns

1In Haskell, a string is just a list of characters, so dedup can operate on strings.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:6 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

out to be sufficient to test these properties on a finite set of inputs. To do so efficiently, Hoogle+
relies on the the SmallCheck property-based testing library [Runciman et al. 2008].
Specifically, for each new candidate program p generated by the synthesis back-end,Hoogle+

invokes SmallCheck to test whether there exists some input where p produces an output within
a given timeout. If this check succeeds, then for each previously displayed candidate p ′,Hoogle+
asks SmallCheck to find a distinguishing input [Jha et al. 2010] for p and p ′, i.e. an input where they
produce different outputs. For example, assume thatHoogle+ has displayed several results for dedup,
including the program p ′=\xs → init (head (group xs)), and the newly generated candidate p
is \xs → tail (head (group xs)). This candidate passes the meaningfulness check (SmallCheck
finds the input [0]where p returns []), but fails the uniqueness check: after exhaustively searching
all lists up to a given length and range of values, SmallCheck is unable to find an input where the
output of p differs from the output of p ′. Based on the failed uniqueness check,Hoogle+ eliminates
p from the list of results presented to the user.

Haskell’s laziness presents a subtle challenge for test-based elimination: in Haskell, it is com-
mon practice to write functions that produce infinite data structures, and such functions should
be considered meaningful. At the same time, trying to print the output of such a function or com-
pare two infinite outputs would lead to non-termination.Hoogle+ builds upon the ChasingBottoms
library [Danielsson and Jansson 2004] to ensure proper handling of infinite values.

2.3 Comprehension
Hoogle+ displays a sequence of meaningful and unique candidates to the user, but how is the user to
knowwhich result implements their requirements?While some experienced programmers might be
able to recall the behavior of the components well enough to mentally reconstruct the semantics of
their composition, most users require further assistance to understand how each candidate behaves.
One way forward is to show the user input-output examples for each candidate. However, there are
two questions that must be addressed to facilitate example-based comprehension.
Problem: Comprehension Conflicts. First,what kind of examples is the user looking for? There
is no “best” example for a candidate program as there are a range of different comprehension goals
that a user might have for each candidate. They may try to differentiate that candidate from other
similar snippets or they might be trying to understand the functionality of the candidate itself.
Solution: Multiple-ObjectiveWitnesses.Hoogle+ supports multiple comprehension objectives
by generating input-output examples that serve to witness different properties of the candidate,
namely: (1) Meaningfulness (2) Uniqueness (3) Functionality. In Fig. 3, the first candidate’s examples
demonstrate these properties in order. The first example, with input-output ("aab","ab"), repeats
the test specification. The next example, ([],[]) witnesses that this candidate is meaningful. The
subsequent example ([0], [0]) serves a differentiating objective: the same input produces different
output on candidate program #2. The last example, ([1], [1]), demonstrates the functionality of the
candidate program, more such examples are available on demand from the “More Examples” button.
Note that in candidate program #2, the input [] demonstrates that the candidate is a partial function.
Problem: Minimality vs Interactivity. Second, when should examples be shown to the user?
Hoogle+ could wait until we have all candidates and then generate examples. On the plus side,
waitingwould let us find fewer inputs (or even just one) to differentiate each candidate. Unfortunately,
the resulting lack of interactivity could drive users away from the tool altogether.
Solution: Laziness. Instead, we stream input-output examples with every candidate, providing
more examples to already-displayed candidates, which may be hidden from view until the user clicks
“More Examples” to avoid cluttering the UI. In the case of dedup, a user might see a usage table as seen
in Fig. 3. This table shows inputs along with their output for that candidate program. A user can edit

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:7

the input for this usage and see the new corresponding output with the “edit” button on the left. A
user can input their own usage with the “New Usage” button on the top left. Finally, a user can ask
for more examples explicitly from the systemwith the “More Examples” button.

3 BACKGROUND
Hoogle+ builds upon prior work from two sources. First, the core program synthesis algorithm
comes from our own prior work on type-guided abstraction refinement (TyGAR) [Guo et al. 2020].
That work developed a novel search technique but we did not focus on end-to-end usability of the
synthesizer. Second, we filter candidate programs with the help of exhaustive testing framework
SmallCheck [Runciman et al. 2008].

3.1 Type-Guided Abstraction Refinement
In our priorwork [Guo et al. 2020]wedevelopedTyGAR, a component-based synthesis algorithm that
takes as input a Haskell type and a set of library functions, and returns a list of programs of the given
type, composed from the library functions. Like prior work in component-based synthesis [Feng
et al. 2017; Gvero et al. 2013; Mandelin et al. 2005], TyGAR reduces the synthesis task to graph
search; the challenge, however, is that in Haskell polymorphic components can infinitely explode
the graph to search through. The key insight to overcome that explosion is to build a graph over
abstract types which represent a potentially unbounded set of concrete types. We showed how to use
graph reachability to search for candidate programs over those abstract types, and introduced a new
algorithm that uses proofs of untypeability of ill-typed candidates to iteratively refine the abstraction
until a well-typed result is found. TyGAR uses a relevant type system to ensure that every argument
is used at least once in a candidate program.
Although TyGAR was able to produce a stream of well-typed candidates, our own experience

during its empirical evaluation identified several shortcomings that had to be fixed in order to turn it
into a practical API discovery tool. Firstly, for some type queries it returned too many uninteresting
(meaningless or repetitive) programs. Secondly, it required the user to describe every programming
task using its most general type, which can be challenging for beginners. Finally, it was often dif-
ficult to analyze synthesis results simply by looking at the generated code. We address these three
shortcomings in present work.

3.2 SmallCheck
SmallCheck is a property-based testing framework for Haskell [Runciman et al. 2008]. Property-
based testing takes as input a property, i.e. a Boolean Haskell function with one or more arguments,
and executes this function on a set of input values in an attempt to find a counterexample, i.e. an
input where the property does not hold. While the original property-based testing framework
QuickCheck [Claessen and Hughes 2000] uses random input generation, its successor SmallCheck
generates inputs exhaustively up to a user-provided constructor depth. As a result, SmallCheck
always find the smallest counter-example to a property.

4 TYPE INFERENCE FROMTESTS
In this section, we detail our algorithm for inferring likely type specifications from tests. In a simply-
typed language this is a straightforward task, since any function the user might want to synthesize
has a unique, concrete type, which must coincide with the type of the test: for example, if the test is
"abaa"→"aba", the intended type specification must be String→String. In a language like Haskell,
however, intended type specifications are often polymorphic, which poses two main challenges for
type inference:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:8 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

(1) Reconcilingmultiple tests.Consideruser inputwith twotests:"abaa"→"aba"and[1,1,1]→
[1], whose concrete types are [Char]→ [Char] and [Int]→ [Int], respectively. To reconcile
these tests we must find a polymorphic type that can be instantiated into either of the two
concrete types: for example, [α]→[α]. To tackle this challenge, we build upon prior work on
anti-unification [Plotkin 1970; Reynolds 1969].

(2) Generalizing from tests. Now consider user input with a single test [1,1,1]→ [1]. The
concrete type of this test is [Int]→[Int], but this behavior can also be produced by a function
with amore general type, such as [Int]→[α], [α]→[Int], [α]→[α], or α→β . It is not obvious
which one of these types would make the best specification: more general types reduce the
search space and hence yield better synthesis results, but generalize too much and you will
miss the intended solution. To tackle this challenge we propose a ranking heuristic to identify
which generalized types are more likely to match user intent.

In Sec. 4.1–Sec. 4.5 we formalize our base algorithm for a simplified setting, where all tests have an
unambiguous concrete type and the type system does not have type type classes. The base algorithm
is extended to deal with ambiguous tests in Sec. 4.6 and type classes in Sec. 4.7.

4.1 Preliminaries
We formalize our base type inference algorithm for a core language defined in Fig. 4.
Types.The language is equippedwith a standard prenex-polymorphic type system: typesT are either
type variables, type constructor applicationsC T 2, or function types. Type variables are denoted
with lower-case Greek letters α ,β,.... For lists, we use the familiar notation [T] as syntactic sugar
for ListT . All type variables are implicitly universally quantified at the top level. A typeT is concrete
if is contains no type variables.
Type ordering. A substitution σ = [α1 7→T1,...,αn 7→Tn] is a mapping from type variables to types
that maps each αi toTi and is the identity mapping elsewhere. We write σT to denote the application
of σ to typeT , which is defined in a standard way.We say that typeT ismore general than typeT ′
(or alternatively, thatT ′ ismore specific thanT) writtenT ′⊑T , iff there exists σ such thatT ′=σT .
For example, [Int]⊑ [α]⊑β . The relation ⊑ is a partial order on types, and induces an equivalence
relationT1≡T2 ≜T1⊑T2∧T2⊑T1 (equivalence up to variable renaming).
We say type T ′ is a common generalization of a set of types Ti if ∀i .Ti ⊑ T ′. The least common

generalization (or join) ofTi always exists and is unique up to ≡, so, by slight abuse of notation, we
write it as a function ⊔(Ti). For example, [Char] and [Int] have two common generalizations, [α] and
β , and [Char]⊔[Int]= [α], the more specific of the two.
Type checking.We omit the exact syntax of terms e , apart from the fact that they include valuesv .
Tests t are built fromargument values and a result value.We also omit the definition of typing environ-
ments Γ, which hold the types of data constructors and binders for λ− terms, and term typing, since
they are entirely standard; instead we assume access to a type checking oracle Γ ⊢e ::T , which decides
whether term e checks against typeT in Γ and a type inference oracle Γ ⊢e=⇒T , which computes the
mostgeneral typeT such that Γ ⊢e ::T holds.Our implementationusesGHCto implementbothoracles.
We extend type inference to tests; in particular, for a test with arguments we infer a function

type: Γ ⊢v→ t =⇒T1→T2 where Γ ⊢v =⇒T1 and Γ ⊢ t =⇒T2. In this section we assume that all
inferred test types are concrete (we relax this restriction in Sec. 4.6). We say that a test t witnesses
a typeT in Γ (Γ ⊢ t ∈T), if Γ ⊢ t =⇒T ′ and T ′ ⊑T . The intuition is that t demonstrates a possible
behavior of a function of type T , if the test’s type is more specific than T . For example, the test
Γ ⊢[1,1,1]→[1]=⇒[Int]→[Int], witnesses the type [α]→[α].

2Throughout this section, we writeX to denote a sequence of syntactic elementsX .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:9

T ::=α |C T |T→T Types
σ ::= [α 7→T] Substitutions
e ::=v | ... Terms
t ::=v |v→t Tests

Γ ⊢e ::T Type checking
Γ ⊢e=⇒T Type inference
Γ ⊢t ∈T Type witnessing

Fig. 4. Core language.

Input: Environment Γ, test suite ti
Output: TypesTk such that ∀i,k .Γ ⊢ ti ∈Tk and

Tk are likely specification types

1: TestToType(Γ,ti)
2: Γ ⊢ti =⇒Ti
3: T⊔ :=AntiUnifyAll(Ti)
4: G := {T |T⊔⊑T∧Inhabited(T)}
5: return TopK(G)

Fig. 5. Type inference algorithm.

4.2 From Tests to Types
Fig. 5 presents an overview of our TestToType inference algorithm. The algorithm takes as input
an environment Γ (the component library) and a test suite t , and returns a sequence of likely type
specificationsT . Which properties need to hold ofT ? Assume that the user’s intended program is e∗
and its most general type isT ∗ (Γ ⊢e∗=⇒T ∗). ThenT ∗ is the best type specification for synthesizing
e∗: although anyT ⊑T ∗might yield the desired program since Γ ⊢e∗ ::T necessarily holds, theremight
bemany more programs e such that Γ ⊢e ::T compared to Γ ⊢e ::T ∗, hence using the more specific
type as the specification is likely to yield many irrelevant results and slow down the synthesis. Of
course, we do not haveT ∗ (let alone e∗) at our disposal, so informally, the goal of TestToType is to
produce a sequenceT such thatT ∗ is likely is occur early in this sequence.

Towards this goal TestToType proceeds in three steps. First, it uses the inference oracle to obtain
the concrete typesTi of the tests. Next, it uses the functionAntiUnifyAll to computeT⊔, the least
common generalization ofTi . Then, it computesG, the set of all generalizations ofT⊔ that maybe
be inhabited by relevant programs, as determined by the function Inhabited. Note that eachT ∈G
is witnessed by every test ti in the input test suite: this is becauseTi ⊑T⊔ by the definition of least
common generalization, andT⊔ ⊑T . Finally, the algorithm ranks the remaining types based on a
heuristic TopK. The remaining part of this section will introduce each step in detail.

4.3 Anti-Unification
Fig. 6 details the functionAntiUnifyAll that computes the least common generalization of a se-
quence of types, using anti-unification [Plotkin 1970; Reynolds 1969]. This top-level function relies
on a pairwise anti-unification procedureAntiUnify, which does the actual work. At a high level,
AntiUnify compares the structure of two types, abstracting different substructures into fresh type
variables. This function takes as input two types and returns their join, and additionally threads
through an anti-substitution θ = [(T ,T) 7→α]—a map from pairs of types to type variables—which
keeps track of the substructures that have already been abstracted.

Now, let us look at theAntiUnify algorithm closely. Lines 18- 23 handle the interesting case when
the top-level structure ofT1 andT2 is different. In particular, lines 20- 23 abstract the two dissimilar
types into a freshly created type variable α and add a new entry into the anti-substitution, which
maps the pair (T1,T2) to α . To find the least common generalization, AntiUnify does not always
create a fresh variable when two types are different. If this pair of types is found in θ (lines 18- 19),
then it has already been abstracted into some type variable α , so we simply reuse this variable. Other
cases of AntiUnify recursively descend into type substructures, threading the anti-substitution
through. For example, when anti-unifying [Int]→[Int]with [Char]→[Char], first the two argument
types are anti-unified into the type [α]with a fresh variable, and the mapping [(Int,Char) 7→α] is

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:10 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

Input: Sequence of concrete typesTi
Output: T⊔=⊔(Ti)
1: AntiUnifyAll(T)
2: returnT
3: AntiUnifyAll(T1;Ti)
4: T :=AntiUnifyAll(Ti)
5: T⊔,_ :=AntiUnify(T1,T ,[])
6: returnT⊔

Input: TypesT1,T2, anti-substitution θ
Output: TypeT =T1⊔T2, anti-substitution θ
7: AntiUnify(T1→T ′1,T2→T ′2,θ)
8: T ,θ :=AntiUnify(T1,T2,θ)
9: T ′,θ :=AntiUnify(T ′1,T

′
2,θ)

10: returnT→T ′,θ

11: AntiUnify(C Ti ,C T ′i ,θ)
12: forTi ,T

′
i do

13: Ti ,θ :=AntiUnify(Ti ,T ′i ,θ)
14: returnC Ti ,θ

15: AntiUnify(T1,T2,θ)
16: if T1=T2 then
17: returnT1,θ
18: else if θ [(T1,T2)]=α then

19: return α ,θ
20: else

21: α := fresh type variable
22: θ := θ∪[(T1,T2) 7→α]
23: return α ,θ

Fig. 6. Anti-unification algorithm.

recorded in θ ; this mapping is reused when anti-unifying the return types, in order to obtain the least
common generalization [α]→[α] (rather than the more general [α]→[β]).

4.4 Type Filtering
Although the least common generalizationT⊔ computed by anti-unification reconciles the types of
all tests, we alsowant to includemore general types into the final type inference result. The challenge
is that the set of all generalizations ofT⊔, {T |T⊔⊑T }, can contain thousands of types (see Sec. 6), and
we need to pick a few that are most likely to represent the user intent. Luckily, many of these types
are obviously uninteresting in the sense that they can only be inhabited by meaningless programs
(i.e. terms that ignore their arguments, or crash / diverge on all arguments). For example, the type
Int→α is uninteresting because there is no way to construct a value of arbitrary type α , while the
type α→β→β is uninteresting because there is no way to use the first argument.

To filter out uninteresting types, we define a simple analysis that computes an over-approximation
of the set of inhabited types: i.e. if the analysis says “no”, then the type can only be inhibited by
degenerate terms; if the analysis says “yes”, the type might still be uninhabited depending on the
component library. The function Inhabited in Fig. 7 implements this analysis. This function deems
a type inhabited if its return type is reachable and each of its argument types is relevant.
Return type reachability.A return type is unreachable if it contains type variables that do not occur
in the argument types (see function Reachable in Fig. 7). Examples include Int→α and [Int]→[α].
Although the latter is inhabited in the strict sense, note that all programs of this type must return
the empty list regardless of the input; we consider such programs degenerate.
Argument type relevancy.An argument type is irrelevant if it cannot be used to compute a value of
the return type (see function Relevant in Fig. 7). There are two interesting cases: type variables and
functions. A type variable can be used in two different ways: (1) if it directly occurs in the return type
or (2) if it can be consumed by a higher-order argument, which is itself relevant. For example, the
sole argument in α→α can be used directly, while the second argument in (α→β)→[α]→[β] can
be consumed by its first argument, to eventually produce the return type. In turn, an argument of
a function typeT→T ′ is relevant ifT is reachable from the rest of the arguments andT ′ is relevant.
For example, the first argument of (α→β)→[α]→[β] is relevant because α is reachable (from [α])
and β is relevant (it directly occurs in [β]).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:11

Input: TypeT
Output: MayT be inhabited?
1: Inhabited(T)
2: (A,R) :=ArgsRet(T)
3: reach := Reachable(A,R)
4: rel :=

∧
T ∈ARelevant(A,R,T)

5: return reach ∧ rel

1: ArgsRet(T→T ′)
2: (A,R) :=ArgsRet(T ′)
3: return ({T }∪A,R)

4: ArgsRet(T)
5: return ({},T)

1: FunTypes(T→T ′)
2: returnT→T ′

3: FunTypes(C T)
4: return

⋃
FunTypes(T)

5: FunTypes(α)
6: return ∅

Input: Argument typesA, return type R
Output: Whether R can be computed fromA
1: Reachable(A,R)
2: return

⋃
TVars(A)⊇TVars(R)

Input: Argument typesA, return type R, typeT
Output: WhetherT can be used to compute R
1: Relevant(A,R,α)
2: if α ∈TVars(R) then
3: return true
4: forTa ∈A,T ∈FunTypes(Ta) do
5: (A′,R′) :=ArgsRet(T)
6: if Reachable(A′,α) ∧
7: Relevant(A\Ta ,R,T) then
8: return true
9: return false
10: Relevant(A,R,T→T ′)
11: return Reachable(A,T) ∧
12: Relevant(A∪{T ′},R,T ′)
13: Relevant(A,R,T)
14: return true

Fig. 7. Type filtering algorithm.

4.5 Type Ranking
As afinal step, the functionTopK returns thek highest ranked candidate types (in our implementation
k=10). Our ranking approximates the likelihood that a candidate type is the user’s intended type,
conditioned on the examples provided. At a high level our strategy approximating that likelihood first
picks the "simplest" types given the tests, then picks themost general types. Our ranking assumes the
user’s tests were just informative enough, that any type structures or similarities were intentional.
The function is based on lexicographic ordering of three simple heuristics.

Our first heuristic penalizes generalizations that abstract over a complex type: a function or a
non-nullary constructor application. For example, consider possible generalizations of [Int]→[Int].
This heuristic penalizes abstracting this type into α→α or α , because these generalizations abstract
over a list constructor and a function, respectively. The intuition is that a user is unlikely to supply
a complex value if it is not required to illustrate the behavior: e.g. it is more natural to illustrate the
identity function with the test 1→1 rather than [1,1]→[1,1]. As an optimization, our implemen-
tation does not generate this kind of generalizations in the first place, since in practice they never
make it into top k . We make an exception for the type [Char] and do not penalize abstracting it into
α , because of the special string literal syntax, which makes values of this type appear simple.

Our second heuristic is to prioritize types that generalize same substructures into the same vari-
able. Going back to the [Int]→ [Int] example, the generalization [α]→ [α] has higher rank than
[α]→[Int] because the former abstracts both occurrences of Int into α . We assume a-priori that
simpler types, those with fewer distinct atomic types, are more likely than complex types, with
more atomic types, for reusable code snippetsHoogle+ is capable of producing. To implement this
heuristic, we build an inverse substitution between the anti-unification resultT⊔ and the generalized
typeT , and penalizeT proportionally to the size of this substitution. In our example, the inverse
substitution for [α]→[α] is [Int 7→α], whereas for [α]→[Int] it is [Int 7→ {α ,Int}], so the former

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:12 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

Input: Types T1, T2, anti-substitution θ , dis-
unification constraints Ω

Output: Set of types Ti such that Ti =T1 ⊔T2, and
their respective anti-substitution θ , wildcard sub-
stitution ?σ , and dis-unification constraints Ω

1: AntiUnify(T ,T ,θ ,Ω)
2: return {T ,θ ,[],Ω}

3: AntiUnify(T1→T ′1,T2→T ′2,θ ,Ω)
4: T ,θ ,?σ ,Ω←AntiUnify(T1,T2,θ ,Ω)
5: T ′,θ ,?σ ,Ω←AntiUnify(?σT ′1,?σT

′
2,θ ,Ω)

6: return {T→T ′,θ ,?σ ,Ω}

7: AntiUnify(C Ti ,C T ′i ,θ ,Ω)
8: forTi ,T

′
i do

9: Ti ,θ ,?σ ,Ω←AntiUnify(?σTi ,?σT ′i ,θ ,Ω)
10: return {C Ti ,θ ,?σ ,Ω}

11: AntiUnify(?α ,T2,θ ,Ω)
12: R :=Abstract(?α ,T2,θ ,Ω)
13: ?σ := [?α 7→T2]
14: return R∪{T2,?σθ ,?σ ,?σΩ | sat(?σΩ)}

15: AntiUnify(T1,?α ,θ ,Ω)
16: ... (symmetrical)

17: AntiUnify(T1,T2,θ ,Ω)
18: returnAbstract(T1,T2,θ ,Ω)

Input: TypesT1,T2, anti-substitution θ , dis-unification
constraints Ω

Output: Type variables α and corresponding anti-sub
θ , sub ?σ , new constraints Ω

19: Abstract(T1,T2,θ ,Ω)
20: α := fresh type variable
21: θ ′ := θ∪[(T1,T2) 7→α]
22: Ω′ := Ω∪{(T1,T2) ≁ (T

′
1,T
′
2)] | [(T

′
1,T
′
2) 7→ α] ∈

θ }
23: R := {α ,θ ′,[],Ω′ | sat(Ω′)}

24: for [(T ′1,T
′
2) 7→α] ∈θ

25: s.t. ∃?σ =mgu((T ′1,T
′
2),(T1,T2))

26: and sat(?σΩ) do
27: R := R∪{α ,?σθ ,?σ ,?σΩ}

28: return R

Fig. 8. Anti-unification algorithmwith wildcard type variables.

is ranked higher (note that we keep the identity mapping Int 7→Int in the substitution, unless all
occurrences of Intwere replaced).

Our third heuristic is to prioritize general types over specific types. In our example, [α]→[α] has
higher rank than [Int]→[Int] because their inverse substitutions have the same size one, but the
former is more general. This heuristic easily over-generalizes: in the absence of the second heuristic,
it prefers [α]→[β] on our example. For this reason we give it the least priority.

4.6 Support for Ambiguously-Typed Tests
Our formalization so far assumed that each test ti has a unique concrete typeTi . Unfortunately, this
is not always the case: Haskell values can have polymorphic types, and using such values inside tests
presents a subtle issue. The simplest example of a polymorphic value is the empty list; so, what is the
type of the test []→0? The user could have intended [α]→Int (e.g. list length), [Int]→Int (e.g. sum
of the elements), or even [Char]→Int (e.g. number of spaces). Note that we cannot assume that theT⊔
type for this (singleton) test suite is [α]→Intwith α interpreted as universally quantified, because
this would preclude the inference of the other two plausible type specifications. Polymorphic values
are not a corner case that can simply be ignored: values like [] and Nothing are common enough, but
things get evenworsewithhigher-order tests, becausemany functions are naturally polymorphic. For
example, consider the following test for the function applyNTimes fromour user study,which applies a
function to some initial valuen times (see Sec. 7 for details): (\x → x ++ x) → "s" → 2 → "ssss".
Here the first argument has a polymorphic type [α]→[α], and, perhaps counter-intuitively, the test
does not actually constrain α to be Char.

In order to support ambiguously-typed tests, we extend the syntax of types with a separate kind of
type variables thatwe refer to aswildcards:T ::= ... |?α . Thewildcards are introduced by the inference

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:13

oracle for tests Γ ⊢t =⇒T , when tests contain polymorphic values. For example, we infer the type
[?α]→Int for []→0. Unlike regular type variables α , which are implicitly universally quantified,
a wildcard stands for a concrete type a user had in mind, which is unknown to the synthesizer.
To accommodate for wildcards during type specification inference, we need to modify to the

function AntiUnify. The join of two types is now not a single type but a set of types, for each
possible instantiation of the wildcard. For example, consider two tests for the function applyNTimes:
(\x → x ++ x) → "s" → 2 → "ssss" and (\x → 0:x) → [1] → 3 → [0,0,0,1]whose types
are, respectively, ([?α] → [?α]) → [Char] → Int → [Char] and ([Int] → [Int]) → [Int] →

Int→ [Int]. The join of these two types is a pair of types ([β] → [β]) → [β] → Int→ [β] and
([Int]→ [Int])→ [β]→ Int→[β]. The first result comes from instantiating ?α 7→ Char and the
second one from ?α 7→Int; importantly, any other instantiation would lead to a type that is more
general than either of the two. After computing the join, the rest of the inference algorithm proceeds
by taking the union of all generalizations of each member of the join, and performs the filtering and
ranking as before.

Anti-Unification withWildcards.Our algorithm for computing the join efficiently (without enu-
merating infinitely many potential wildcard instantiations) is shown in Fig. 8. There are several
differences between this algorithm andAntiUnify from Fig. 6. First, the algorithm returns a set of
anti-unification results, andusesHaskell-likemonadicnotation to compute all combinationsof results
in lines 3–6 and 7–10. Second, each anti-unification result also includes a wildcard substitution ?σ ,
whichmapswildcards to types, anda set ofdis-unification constraintsΩ of the formT1 ≁T2. These com-
ponents record the decisions made about wildcard instantiations in the current branch of the search.

Themost interesting case of anti-unification is captured by the helper procedureAbstract, which
abstracts two types with dissimilar top-level structure into an anti-unification variable. Because the
input typesT1 andT2 might contain wildcards,Abstract cannot decide a-priori whether to create
a fresh anti-unification variable or to reuse one of the variables already in θ . Instead it tries all of
these option in turn and discard those that conflict with the accumulated dis-unification constraints
Ω. Lines 20-23 create a fresh type variable, and add to Ω the constraints that the input typesT1,T2
must not unify with any existing key in θ ; if the resulting constraints Ω are unsatisfiable (i.e. contain
a dis-unification of equal types), then this option is discarded. Lines 24–27 instead attempt to reuse
an existing mapping [(T ′1,T ′2) 7→α] from θ ; the mapping is only considered if (T1,T2) unifies with the
key (T ′1,T ′2) (mgu stands for “most general unifier”), and the result of this unification is consistent
with the current Ω. Note that in the absence of wildcards,Abstract reduces exactly to the case of
dissimilar types in Fig. 6: in this case, the pair (T1,T2) either occurs as a key in θ exactly or it does
not; hence only one set of dis-unification constraints computed in lines 22 and 26 can be satisfiable,
andAbstractwill always return exactly one result.

4.7 Support for Type Classes
Type classes are a popular feature of the Haskell type system [Wadler and Blott 1989], and we
support them by making another modification to AntiUnify. When abstracting typesT1 andT2
into a fresh type variable, we compute the set of type classes these two types have in common and
attach a corresponding type class constraint to the resulting variable. For instance, consider the
anti-unification of [Int]→[Int] and [Bool]→[Bool]. When the first pair (Int,Bool) is anti-unified,
we check that both Int and Bool are instances of the type classes Eq and Ord. Hence, we abstract them
into constrained type variable (Eq α ,Ord α)⇒α ; collecting constraints on all variables, we compute
the anti-unifier (Eq α ,Ord α)⇒[α]→[α] for the top-level types.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:14 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

5 TESTS FOR ELIMINATIONANDCOMPREHENSION
Next, we describe howwe use the SmallCheck’s property-based testing [Runciman et al. 2008] to
eliminate undesirable candidates and produce examples that aid different comprehension goals.

5.1 Elimination
The eliminationprocedure takes as input a sequenceP of candidate programs foundby the synthesizer
and returns a subsequence P∗ ⊆P that only containsmeaningful and unique programs.
Meaningful Programs.A candidate program ismeaningful if there exist an input value on which
the candidate terminates and produces an output value within some timeout. Formally, we denote
the output of a program p on an input tuple i as JpK(i), where JpK(i) = ⊥ if p crashes or diverges
on i . We say that a program is meaningless if ∀i . JpK(i)=⊥. For example, the well-typed candidate
\x → head [] is meaningless as it yields⊥ regardless of the input x.
TestingMeaningfulness.We cannot test exactly whether an arbitrary program p is meaningless
for two reasons: first, the set of possible inputs can be infinite, and second, for a given input wemight
need to wait an unbounded amount of time to determine whether a program terminates. Instead we
say thatp is likelymeaninglesswith respect to a finite set of inputs I and timeoutT if∀i ∈ I . JpKT (i)=⊥,
where JpKT denotes the result of executing p for at most timeT .Hoogle+ tests whether a candidate
is likely meaningless by invoking SmallCheck to enumerate all the values of a given input type up
to a given constructor depth, and then running the candidate on the enumerated inputs to check
if they successfully produce an output within a given timeout. Thus, candidates like \x → head []

that yield⊥ for all inputs are deemedmeaningless and eliminated. Because the check is approximate,
Hoogle+might erroneously eliminate a meaningful program if it requires large inputs to produce
an output. Our empirical evaluation shows (Sec. 6), that this happens very rarely in practice.
Lazy Candidates Can be Meaningful. In a lazy language like Haskell, determining whether a
given program output JpKT (i) is⊥ is actually non-trivial. Generally,Hoogle+ has to force program
evaluation, for example, by printing the output (i.e. converting it to string). While doing so, however,
Hoogle+ has to take special care not to eliminate programs that return infinite data structures. For
example, consider the candidate \x → repeat xwhich returns an infinite list of x values. This can-
didate should be deemed meaningful, since it is common practice to produce infinite data structures
that can be consumed lazily. Printing the output of this program, however, leads to a non-terminating
execution, and hence by default the program is deemed meaningless.
To overcome this challenge, we use a special function approxShow introduced in [Danielsson

and Jansson 2004], which prints an execution result only up to a finite given depth. If the result
can be partially printed, the program is deemed meaningful. In the example above we invoke
approxShow 3 (repeat 1) to print the result of repeat 1 up to depth 3, which yields "[1,1,1,_". As
this value is not⊥,Hoogle+ deems the candidate to be meaningful.
Unique Programs.We say that a candidate p is observationally equivalent to another candidate p ′,
written p ≡p ′ if ∀i . JpK(i)= Jp ′K(i), i.e. if p and p ′ return the same results for all inputs i . We say a
candidate p is unique with respect to a set of candidates P ′ if for each p ′ ∈ P ′ we have p .p ′, i.e. if
for each p ′ there exists some distinguishing input i such that JpK(i),Jp ′K(i).
Testing Uniqueness. Just like meaningfulness, uniqueness is impossible to check exactly. Instead,
we say that p is a likely duplicate with respect to P ′ and relative to an input set I and timeoutT , if
∃p ′ ∈P ′.∀i ∈ I .JpKT (i)= Jp ′KT (i), i.e. there exists a program p ′ such that on any input from I either
both programs return the same value or they both fail (crash or execute longer thanT).

Hoogle+ presents the candidates to the user one-by-one, as soon as they are found. For each new
candidate p,Hoogle+ uses SmallCheck to test whether it is a likely duplicate with respect to the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:15

programsp1,...,pk thatwerepreviously shown to theuser. Because the check is approximate,Hoogle+
might accidentally eliminate a unique program if the distinguishing input required to differentiate
it from every previous program is large; again, our study show that this rarely happens in practice.

Examples of Unique Programs.Our uniqueness test yielded some interesting results. Consider a
queries applyNTimes :: (a → a) → Int → a → a from our user study, which composes n copies
of a given function and applies it to an initial value. To our surprise, Hoogle+ synthesized two
candidate solutions, which at the first glance appeared equivalent: \f n x → (iterate f x) !! n

and \f n x → foldr ($) x (replicate n f). Closer examination revealed, that in fact, the two
terms above behave identically when n is non-negative, but when n is negative, the former solu-
tion crashes while the latter returns x. On the other hand, consider the result found by the query
applyPair :: (a → b, a) → bwhich applies the first element in the pair to the second element.
Hoogle+ returned the expected solution \p → (fst p) $ (snd p) but we found that the unique-
ness test eliminated a seemingly different solution, \p → uncurry id p. Upon closer examination,
however, we found that these two candidates indeed have the same behavior.

5.2 Comprehension
Often, the best way to understand a piece of code is to run it on some inputs, observe the outputs
and then build a mental model relating the two. However, to understand a new piece of code, one
does not typically run arbitrarily (randomly) chosen inputs. Instead, we can often discern patterns
from small, carefully chosen inputs, that may be crafted to demonstrate some difference between
the program under study and another candidate.

Examples for Comprehension.An example for a programp is a pair of input and output values (i,o)
where o=JpK(i). Motivated by the above observations,Hoogle+ generates three kinds of examples
to comprehend the synthesized programs more easily, deeply, and rapidly.

(1) Meaningfulness :Hoogle+ determines that the program is meaningful by finding at least
one success example (isucc ,osucc)where osucc ,⊥ Ifp is a partial function, then in the course of
determining meaningfulnessHoogle+may also have found a failure example (if ail ,⊥). Both
the success and failure examples are shown to the user to help with comprehension.

(2) Uniqueness : Additionally,Hoogle+ only shows programs that are unique with respect to
all previously shown candidates. This is established by a set of uniqueness examples (i j ,oj) that
differentiatep from its predecessors P ′, in that for eachp ′j ∈P ′, we haveoj ,JpjK(i j). Thus, each
of these uniqueness examples are also shown to help the user understand how the candidate
p is different than the other p ′j candidates.

(3) Functionality : Finally, sometimes the user wants other examples that illustrate the function-
ality of the candidate. Hence,Hoogle+ generates a set of functionality examples where each
new input is different from all previously generated inputs.

6 EMPIRICAL EVALUATION
In this section, we empirically evaluate the effectiveness of type inference from tests and elimination.

Benchmarks. In all experiments, we use the component library and benchmark suite used by Guo
et al. [2020]. Each of these benchmarks is a type-only query. We exclude one benchmark, which
contains the type ByteString, since it is impossible to provide a test value for this type inHoogle+
(this type requires a special function call to convert from a string). To the remaining set of queries
we add the tasks from our user study (Sec. 7), arriving at a total of 45 benchmarks.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:16 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

6.1 Type Inference From Tests
We evaluate the quality of the type inference algorithm on two sets of inputs: tests written by
participants in our user study, and tests generated randomly byQuickCheck.
User-Provided Tests.Our first experiment evaluates the accuracy rate of type inference algorithm
on real user data. For this purpose, we consider the five user study tasks, for which the correct type is
defined in the study definition (see Sec. 7.1).We collected 76 type inference queries for these tasks out
of the logs of searches performed by users in the course of the user study, after ruling out ill-formed
searches (e.g., syntactically incorrect examples).We ran the type inference algorithmon these queries.
In 39 queries the correct answer is ranked first, in 4 queries it is ranked second, and in one query it
is ranked third. The median rank of all queries is 1. For only 5 out of 76 queries the correct result does
not appear in the top 10. This shows that our algorithm infers correct types from user-provided tests.
Randomly Generated Tests.WhileHoogle+ effectively infers types for tasks from our user study,
this only accounts for 5 out of 45 benchmarks. Thus, we perform a second experiment to determine
whether our inference algorithm generalizes to other programming tasks. Recall that each of our
benchmarks is a type-only query. In our second experiment, we useQuickCheck [Claessen and
Hughes 2000] to generate random input-output examples as follows. First, if the query has type
parameters, we randomly instantiate them using a fixed set of base types (e.g. Int, Char, etc), to get
a randomly generated monomorphic instantiation. Next, we invokeQuickCheck on the instance to
generate values for the inputs and outputs of the signature to get a concrete test for the original type
query. We evaluate our inference algorithm by running it on one, two, or three randomly generate
tests and measuring the rank at which the “correct” signature (i.e. original type query) appears in
the inference results. We report average results over six runs to reduce the uncertainty of random
example generation. The results of this experiment are summarized in Fig. 9 (Left).
Results. The heat map is sectioned by the number of type variables in benchmark queries, and each
cell of the heat map shows the percentage of benchmarks (of that number of type variables) where
the correct result appears at that rank. Cells with darker colors represent a larger percentage.
For the most part,Hoogle+ ranks the correct solution first or second, across the board. The few

exceptions are seen at the bottom right of the chart, in runs with four type variables and only one test,
making it hard to get the correct generalization from single concrete type. Within a given number
of type variables, the rank of the correct type worsens as the number of tests decreases. This is as
expected as fewer tests and more type variables lead to a larger set of possible generalizations, which
makes it harder to identify the correct ones.
To confirm this intuition, we study the effect of the number of type variables and tests on the

number of generalization, before and after filtering. Fig. 9 (Right) shows the minimum andmaximum
numbers of generalizations as well as median ranks over six runs. As we can see, the maximum value
of type generalizations may reach hundreds of thousands or even millions in the case of many type
variables when few test inputs are provided. However, our inference algorithm still produces the
correct solution at a high rank: it has a median rank 1 or 2 in 12 out of 15 cases.

The difference in pre- and post-filtering generalizations shows that our filtering algorithm is highly
effective, usually reducing the number of generalizations by at least an order of magnitude. This dras-
tically reduced search space is a big step toward selecting the correct program.Of course, there is room
for improvement as in a fewcases (e.g. 3 type variables and 1 test)we still fail to provide a good answer.

6.2 Elimination
Next, we evaluate our test-based technique for eliminating irrelevant program candidates returned
by TyGAR. Recall that test-based elimination can produce false negatives, i.e. erroneously eliminate
a meaningful and unique program because it did not search large enough inputs or did not wait

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:17

vars # tests median
rank

pre-filter generalizations post-filter generalizations
min max min max

0 3 2 45 2,216 7 413
0 2 2 45 2,216 7 413
0 1 2 45 2,216 7 413
1 3 1 9 124,176 3 37,703
1 2 1 6 3,329,455 3 779,819
1 1 1 27 3,329,455 9 779,819
2 3 1 9 40,728 6 5,071
2 2 1 9 141,127 6 31,832
2 1 6 27 407,759 18 37,778
3 3 1 2,430 546,966 496 71,853
3 2 2 2,430 969,220 54 97,433
3 1 - 35,964 8,242,171 4,846 589,284
4 3 1 243,000 818,262 38,520 77,514
4 2 1 414,558 2,276,910 27,759 202,652
4 1 - 3,314,300 81,100,863 168,838 5,939,433

Fig. 9. (Left) Type inference results on random generated tests. We compare the results between different

number of type variables in the expected type and different number of tests. The x-axis is different ranks. The

y-axis is grouped by number of type variables, and each group has three rows corresponding to evaluation

on 3 to 1 tests. Each cell shows the row-wise percent of benchmarks. Darker colors meanmore benchmarks

have correct answers of that rank among those with the same number of vars and tests. (Right) Type inference

counts on random generated tests. We report the median rank of correct solutions, min and max counts of type

generalizations before and after filtering. ’-’ in ranks means no correct answer found in the top 10 results.

long enough for the program to terminate. On the other hand, elimination cannot produce false
positives: if it deems a program meaningful and unique, this is always accurate. In the rest of the
section we evaluate both the importance of elimination (the number of true negatives) and its recall
(the proportion of false negatives).
Experimental setup. To evaluate the elimination strategy inHoogle+, we ran three experiments
on the 45 benchmarks in our suite:
(1) TyGAR-180: we ran TyGARwith a 180-second timeout per benchmark
(2) HP-180: we ranHoogle+with a 180-second timeout per benchmark
(3) HP-360: we ranHoogle+with a 360-second timeout per benchmark

We then manually labeled all meaningless results in TyGAR-180 and partitioned the rest into se-
mantic equivalence classes. Next, we compared results inHP-180 to our labeled set, expecting one
representative from each meaningful equivalence class to remain. We observed some differences
betweenHP-180 and the labeled set; we refer to these mistakenly discarded programs as loss due to
misclassification. Finally, we compared results inHP-180 with those inHP-360, detecting programs
that are missing simply because they take too long to generate with elimination; we refer to this as
loss due to testing overhead. The results are shown in Fig. 10.

The graph shows that the number of true negatives is often high, sometimes an order of magnitude
higher than the number of true positives. Hence we conclude that elimination is important: without
it, the user is likely to be overwhelmed with meaningless and redundant programs when searching
with a type-only specification.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:18 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

Fig. 10. Elimination results on the benchmark suite. For each benchmarkwe report the number of true positives

(interesting programs that are reported), true negatives (uninteresting programs that are eliminated), and false

negatives (programs that are mistakenly eliminated or never generated due to testing overhead).

Loss due toMisclassification. Programs lost bymisclassification are programswhere nowitness to
theirmeaningfulness or uniquenesswas found.When looking for awitness,we only enumerate exam-
plesuptoacertainconstructordepth (in thisexperimentweuseddepth3)withina timeoutof4seconds.
When the witness is outside this range,Hoogle+will misclassify the program as uninteresting.

Our results show that misclassification is infrequent. In benchmarks with relatively high misclas-
sification rates (e.g. flatten) it is caused by the complexity of input types, which in turn requires
large constructor depths to generate interesting inputs. For instance, two solutions for the query
flatten :: [[[a]]] → [a] are \xs → concat (init xs) and \xs → concat (concat xs), with a
distinguishing input xs = [[[]], [[0]]]; this input, however, lies at constructor depth 5, and hence
is not generated.

Loss due to Testing Overhead. It takes extra time forHoogle+ to test meaningfulness and unique-
ness for each candidate, which in turn takes away from the time to perform the TyGAR candidate
search. This means TyGARmay find fewer results than before. Most benchmarks have a testing
overhead loss rate of no more than 10%.

We also carefully examined the benchmarkswith high testing overhead loss rates (e.g. takeNdropM),
and found that they all have a large number of displayed candidates found by the synthesizer. This
means it takes more time to establish uniqueness for each new candidate as we must find inputs
that distinguish the candidate from each previously displayed one. This delay in uniqueness check
prevents the synthesizer from enumerating more candidates yielding testing overhead losses.

Trade-off. There is a trade-off between misclassification rate and testing overhead: increasing con-
structor depth and testing timeoutmakes test-based eliminationmore precise and thus decreases loss
due to misclassification; at the same time, this increases testing overhead and the associated loss. We
experimented with different timeouts and depth limits, and found that changing these parameters
had no significant effect on most benchmarks.

7 USER STUDY
We conducted a user study that sought to answer questions about the utility and usability of our tool.
We focused on the following research questions:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:19

• RQ1:Does synthesis help programmers solve program search tasks compared to traditional meth-
ods? We believe that better performance on search tasks leads to greater productivity, as many
mundane programming tasks boil down to snippet search.
• RQ2: How do functional programmers express their intent in the synthesizer? What styles of
input do these programmers use to guide their search with a tool? Do they prefer to search
with types, tests, or a mix?
• RQ3: How do functional programmers interpret the results they receive from the synthesizer?
Users have several methods to understand a candidate presented to them.Hoogle+ provides
documentation, automatically generated examples, user provided examples, and the code itself.
Out of this wealth of information, what did programmers find useful in understanding the
programs they are looking at and making decisions about candidate programs?

Choosing a control. In order to better understand the way Haskell programmers search for code
today, we performed an initial information-gathering survey on the way Haskell programmers
search for code. We surveyed 151 people online. Of those respondents who use Haskell in varied
settings (47% industry, 48% academic, 54% open source are the top three) and with different levels
of experience (12% less than one year, 29% 1-6 years, and the remainder over 7 years), 84 users listed
Hoogle as their first engine of choice and further 27 as their second engine of choice for Haskell code.
Hoogle permits searching for a library function by either a type signature or by its name. Of those
who listedHoogle as one of their top choices, 121 listed searching by type and 107 listed searching
by name as one of their preferred search modalities. The next most popular search engine, Google,
was reported by only 37 users as their their top choice. We therefore assess the utility of our method
compared to the most frequently used alternative, and choose searching withHoogle as our control.

7.1 Study Design

Recruitment. The Haskell community is scattered in small pockets around the world. We planned
our study to work remotely to sample from the broad community. We recruited 30 participants (6
female,24male) viaTwitter, Reddit, university labmailing lists, andmailing lists devoted to functional
programming or specifically Haskell. 22 participants were from academia (11 different institutions)
and 8were from industry (7 different companies). We asked participants to self-identify with same
experience classification from our exploratory survey, and did not admit into the experiment users
who have never used Haskell regularly. Of those categories, we had 12 participants new to Haskell,
10 intermediate-level users, and 8 expert users. The participants were paid for their time.

TaskSelection.Weselected our tasks to test different aspects ofHaskell that programmersmust keep
inmindwhen searching for program snippets.We created two tasks that require using a higher-order
function, while the other two tasks do not need a function as an argument. Their full description
as provided to users can be found in Fig. 11:

(0) Training - concatNTimes :: Int → [a] → [a]. This program concatenates its second argu-
ment n times to itself. This task was intended to be simple with no express challenges.
Solution: \i xs → concat (replicate i xs)

(1) Task A - firstJust :: a → [Maybe a] → a, gets the first Just from the list with a fallback,
default value. This task is challenging as it requires composing three uncommon components.
Solution: \def xs → fromMaybe def (listToMaybe (catMaybes xs))

(2) Task B - dedup :: Eq a => [a] → [a], our running example removes adjacent duplicates
from its input. This task challenges participants to consider and produce a typeclass constraint.
Solution: \xs → map head (group xs)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:20 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

Training
Description. Function concatNTimes takes two inputs, a natural number n and a list
xs. It concatenates xs n times to itself.
Example. concatNTimes 2 "abc" = "abcabc"

Task A

Description. Function firstJust takes two arguments: a list of Maybe a’s and a
default value. It returns the first element from the list that is a Just or the default, if no
such element exists.
Example. firstJust 0 [Nothing, Just 1] = 1

Task B
Description. Function dedupe takes one input, a list. It returns the list with any
adjacent duplicate values removed.
Example. dedupe "aaabbab" = "abab"

Task C

Description. Function applyNTimes takes three arguments: a one-argument function
f, a natural number n, and an initial value x. It applies f to x, n times, setting up a
pipeline of function applications.
Example. applyNTimes (\x → x ++ x) 3 "f-" = "f-f-f-f-f-f-f-f-"

Task D
Description. Function inverseMap takes two inputs, a list of functions fs and an input
x. It applies each element of fs to x and returns a list of those results.
Example. inverseMap [(\x → x + 2), (\x → x * 2)] 5 = [7, 10]

Fig. 11. The task names and descriptions provided to users in our study.

(3) Task C - applyNTimes :: (a → a) → Int → a → a, applies its function argument n times
to its last argument. This task requires thinking about combining higher-order functions.
Solution: \f i x → (iterate f x) !! i or \f n x → foldr ($) x (replicate n f)

(4) Task D - inverseMap :: [a → b] → a → [b], applies each element of its list of functions
to its second argument. Like task C, this also requires considering higher-order functions.
Solution: \fs x → zipWith ($) fs (repeat x) or \fs x → map ($ x) fs

Procedure. Each participant was asked to complete four short program search tasks, listed above.
Each of the four tasks had a high level, English-language description of the desired result, along
with one example to characterize the expected results of that program, as shown in Fig. 11. The first
two tasks were completed under our control workflow, and the next two tasks—under the treatment
workflowwithHoogle+. Each half of the study opened with a training task to allow the participant
some time to familiarize themselves with the workflow; each half closed with a short questionnaire.
Each task was time limited to 8 minutes to ensure the whole study would fit within one hour.
Control. In the control segment of the experiment, userswere providedwith an onlineGHCi session3
and theHoogle search engine, which they were permitted to search by name or by type. The GHCi
session was pre-seeded with all the same function and modules thatHoogle+ had at its disposal.
Users were instructed to solve the task with a composition of existing library functions.
The purpose of the interpreter was to compose the different components of the solution. We

therefore imposed several restrictions to focus users on program search: 1) Participants could not
invoke GHCi’s type informational features on library functions such as :t–which prints the type of
an expression– :i or :browse–which give further information on a type or module; 2) they could not
import any additional modules, and 3) they could only invoke GHCi to execute a (partial) solution
on an example input or to inquire about the type of their (partial) solution. Additionally, users were
not allowed to use control structures, recursion, or pattern matching in their solution to ensure a
component-based answer.
3https://repl.it/languages/haskell

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

https://repl.it/languages/haskell

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:21

(a) Task completion percentage.

Data labels are absolute comple-

tions.

(b) Task time averages (seconds),

including timeouts

(c) Task time averages (seconds),

without timed out sessions

Fig. 12. Comparison of time to complete, with and without participant timeouts. 12a shows completion

improvements. An asterisks next to a task indicates a statistically significant change.

Users could follow any links on theHooglewebsite, but were forbidden frommaking an open-
internet search (e.g.Google or Stackoverflow). Participants were given a training task to familiarize
themselves with these interaction restrictions.
Treatment. Users were presented with our tool, as presented in Sec. 2–they did not have access to
the GHCi or toHoogle. Users were trainedwith the same training task as in the first half of the study.
Experiment groups. Every participant in our study executed the control setting, followed by the
treatment (within-subjects). In order to collect data on all tasks, we assigned users to one of two
groups, rotating which tasks are control tasks and which are treatment tasks. Note that we did not
additionally randomize the order of the tasks, since our control setting is similar to users’ regular
workflow, so there is no need to isolate knowledge transfer from it.

The tasks were grouped together: task group 1, task A and task C; and task group 2, task B and
task D.We grouped the tasks as A/C and B/D to ensure that each group would have one higher-order
query and one first-order query. The study groups are then:
(1) Task group 1 in control, then task group 2 withHoogle+;
(2) Task group 2 in control, then task group 1 withHoogle+.
Users were randomly assigned into one of the two study groups, while preserving an equal dis-

tribution of experience between the groups. Each group had: 6 with less than 1 year, 5 with 1-6 years
experience, and 4 with 7+ years experience.

7.2 Results
We present the results relevant to each research question separately. In the remainder of this section,
we set the threshold for statistical significance at p<0.1.

7.2.1 RQ1: Does synthesis help programmers with program search tasks? For each of the four tasks
in a session we measured the time until the user completed the task, and whether the task was
completed or timed out (8 minutes). The results are shown in Fig. 12.
Completion rates.Of the 60 tasks attempted with each tool, 29 were completed withHoogle and
44 withHoogle+, a 51% increase in completion rate withHoogle+. Fig. 12a shows the breakdown
by task.

In a per-task breakdown, completion rates of users improved for tasks A, C, and D.We evaluated
the change in the number of completed sessions with a Fishers-Exact test, and found the change to
be statistically significant for the overall increase in completed sessions withHoogle+ (p= .009),

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:22 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

Fig. 13. Median search modality across all

four tasks, by experience level Fig. 14. Breakdown of feature perception,

ordered frommost used to least used.

and for tasks A (p= .003), and D (p= .080). While more users completed task C withHoogle+ than
in the control setting, this change is not statistically significant (p= .5).

In task B there is virtually no association between the setting used and completions (p= .715), and
the low completion rate seems to be more influenced by the difficulty of producing the typeclass
constraint in the searched type.
Completion time.Hoogle+ improved the average time to complete a task by 35 seconds. Average
times are shown in Fig. 12b.

Since tasks vary in components and difficulty,we also examine the data per-task. The improvement
is preserved in tasks A, C, andD.We evaluated the change in time-to-complete with aMann-Whitney
U-test, and found the change statistically significant for tasks A (p = .0003) and C (p = .051), but
neither the improvement in task D (p = .354) nor the 5 second increase in task B (p = .460) are
statistically significant. The tool overall enjoys statistical significance over control (p= .004).
Additionally, we examined only the times to complete when the user did not time out, shown in

Fig. 12c. This allow us to take a closer look at howmuch help wasHoogle+when it does help. While
the aggregate difference is smaller, a mere 15s improvement, we notice that in the individual tasks,
differences are intensified. We also notice that for two tasks, B and D, the trend has reversed itself:
users who were helped byHoogle+ completed task B, on average, a full minute faster, and task D
almost a minute slower. Even still considering only those who completed their task, we do not find
these differences statistically significant in task B (p= .165) or task D (p= .386). We observe similar
significance for the remaining tasks (task A: p= .0002, task C: p= .060, overall: p= .005).
We conjecture that task B required familiarity with typeclasses, so for those unfamiliar with the

feature,Hoogle+ could not help them; and, those with that knowledge could fly. Further, task D’s
expected solution may have been obvious to some and could easily write it out in control; yet, those
in the treatment setting had to coaxHoogle+ to generate the right candidate with enough examples.
Correctness.We logged the final solutions presented if users did not time out. Between both control
and treatment, across 120 recorded tasks, and 73 total completions, only one participant concluded
with an incorrect solution, for task A, usingHoogle+. While this falls entirely within the margin
of error, we do discuss the particulars of the session further in the next subsection.

Overall, we see thatHoogle+ greatly improves completion rates over the control setting, as well
as a modestly improving the time to result. Thereforewe answer RQ1 in the affirmative.

7.2.2 RQ2: How do functional programmers express their intent in the synthesizer? We logged user
searches made in the course of the experiment, and analyzed the style of Hoogle+ searches users

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:23

made.Hoogle+ permits 3 kinds of searches: (1) type-only search, leaving the test part of the spec-
ification empty, (2) test-only search, then using a type thatHoogle+ suggested, and (3) type-and-test
search. Users made a total of 115 searches across allHoogle+ sessions, with users making on average
a little fewer than 2 searches per task. Only 22 searches were type-only, leaving 93 searches involving
at least one test.

The style of searchvaried greater by experience level thanby task. Thebreakdownof these searches
is shown in Fig. 13. Experts relied on tests the least, making a median of 0.5 test-only searches across
all tasks, while inexperienced Haskell users made a median of 2 test-only queries. Despite our pre-
study survey discovering that searchingHoogle by type was the most popular way to query for
a component, searching by type-only in our synthesis setting was uniformly the least popular mode.
Test Provenance. Tests were an important part of how participants made their searches. We note
where these tests came from. Task descriptions included one ready-made test. Of the tests used in
searches, 46were directly from the task; 63were original to the participant (though somewere closely
based on the task or what was on screen); only 2 tests came from examples provided byHoogle+.

To answer RQ2: across the board, users searched by type the least during theirHoogle+ sessions.
While beginners preferred test-only searches significantly, tests were overwhelmingly part of

user searches.Additionally, users have a strong preference for providing their own tests.

7.2.3 RQ3: How useful are Hoogle+ features in interpreting results? We asked users to fill out a
questionnaire after completing the tasks to assess what parts of Hoogle+ they used and what they
found most helpful. The ratings of Hoogle+ features by users who used them (i.e., did not mark “did
not use” in the survey) appear in Fig. 14.
In general, users foundHoogle+ features to be helpful or very helpful. The only features rated

very unhelpful by any user were the documentation available when hovering on a component and
the type-only search, which, as seen earlier, was also the least used of all search options. The users
dissatisfied with the documentation liked the idea but indicated they wanted a different experience
around reading the documentation inline.
The less-used features of Hoogle+, editing and lifting a usage, were used by participants who

needed their functionality, so it is not surprising they also found them helpful. A non-negligible num-
ber of users found auto-generated examples unhelpful, which we will discuss in the next subsection.
To answer RQ3, with the exception of the auto-generated examples, Hoogle+ features are

useful to users in interpreting results.

7.3 Discussion

Overall effect on aid.Overall, the effect of Hoogle+ on user performance was very encouraging,
and feedback from participants was positive. In fact, one user said they felt they didn’t really solve
the task–the tool did–and that it felt like cheating at programming!
The four different tasks tested in our experiment are varied and stress different parts of a partic-

ipant’s Haskell knowledge. Task B required knowing or picking a typeclass, and task A involved
lesser-known components in the Data.Maybe library. The control setting required the participants
to come up with intermediate types for function compositions, in order to search the individual
functions by type onHoogle. In our experience, about half of the participants did not knowwhat
the intermediate types should be in a solution a priori.
We observed that the task either immediately made sense to participants or they struggled with

it. In the data, we see a clear bimodal performance curve in both control and treatment, between
those who “got it” and those who timed out or almost timed out. Task D is the most extreme example
of this, causing the time to completion of those who finished the task in the control setting to be
extremely fast (e.g., one participant solved the task in under a minute, saying they encountered

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:24 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

a similar problem in their work). Still, more participants could solve task D with Hoogle+ than
without, showing that its value is in the cases that don’t immediately click.

In tasks A and C the effect of usingHoogle+was most significant, both in completion and in the
change in times. We believe that these two tasks were particularly hard to break down into inter-
mediate types and component-searches and this played to our tool’s strengths. A basic assumption
of human-in-the-loop synthesis is often that the programmer is capable of helping the synthesizer
break down the task. It is possible that in a functional setting, this assumption does not hold.
Barriers.We asked users about barriers to solving their tasks after both the control portion and the
treatment portion of the study.

After the control setting, several users expressed feeling daunted by the task of coming upwith the
right intermediate types and searching for the right function that contains what they need. This ties
in to the significantly slower control times in the tasks A and C that require uncommon components
and complex, higher-order types, respectively.

Additionally,Hoogle users had frustrations about the tool itself. Results often contain cruft from
domain specific libraries that are usually not the function or direction intended. One user explicitly
named as a barrier the need to browse a large set of results on a simple search. Several usersmentioned
vaguely remembering the necessary function, and having to searchHoogle to recall the order of
arguments or theprecisenameof the function, butHoogledoesn’t permit searches bydocumentation.

Themost frequent barrier toHoogle+userswere slow synthesis times. Specifically, the lack of indi-
cation if a search thatwas taking longwouldyield resultsorwait and thenreturnnothing.Additionally,
users expressed the need for messaging suggesting actions to the user when no results came up.
Several users mentioned difficulty in understanding what the candidate functions were actually

doing, because any example provided was only shown as an end-to-end execution. One participant
suggested drilling down into a candidate’s execution on an example would help.
These point to experience and design improvements that are needed forHoogle+ to become an

effective production tool, but are not insurmountable.
Search Style. In our observations, we found that participants would fall back to example-only
searches when they were at a loss for the right type (mostly with the most novice participants), or
when they wanted to let the tool do more work for them. One participant made the observation that,
“the point of a tool is to take the thinking out”.

Task B is a particularly interesting case: only two participants searched with types-alone, the
fewest of any task. Perhaps most users could tell the function’s type signature Eq a => [a] → [a] is
very underspecified– that it says very little about what should happen to inputs– and so included at
least one test with their search. This highlights the occasional shortcomings of types as specifications,
ones that are mitigated by allowing tests in the search specification.
Auto-generated Examples.As shown in Fig. 14, the auto-generated usage examples for candidate
programs were theHoogle+ feature users were least satisfied with. We observed that this stemmed
mainly fromuser expectation of usage examples did not entirely aligningwith the criteria for example
generation (Sec. 5.2). Specifically, users did not need differentiation between the candidates as much
as they wanted usages to explore the functionality of the current program they are investigating.
Users who did try to understand the candidates via the generated examples wished for a greater

diversity of examples. Those who did ask for more examples tended to ask formany more examples,
6.7 more, on average, with some clicking the button up to 17 times (between both tasks). This shows
that these users were hoping for the system to help them better understand their candidates.
This is perhaps best illustrated by the only incorrect result out of 60Hoogle+ tasks performed.

The user, a Haskell novice, made use of test-only searches but selected a type too specific for the
task. They then selected a candidate that appeared to fit the task description but would crash on

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:25

inputs they never tested. The user did investigate the candidate by asking for more examples and
editing existing ones; however, the user did not attempt any complex inputs. This user’s experience
demonstrates room for improvement in our example generation—better aligning its goals with the
needs of users, and producing a greater variety of examples.

7.4 Threats to Validity
We selected tasks and components to operate over several common, built-in libraries. Most partici-
pantswere familiar withmany functions but had to limit themselves to the subset we permitted in the
control setting.This introduced“unintentional complexity”asoneexpertuseraptlyput.Weattempted
to mitigate this with a training task in the control setting to familiarize users with our restrictions.
We gave participants only 8 minutes to complete each task. This short time limit is lab induced,

and some participants reported a sort of test-anxiety that may have affected their performance.
Anecdotally, many participants were close to completing the task in both control and experiment
after timing out. Since the data is right-censored, times over eight minutes are only known to be over
eight minutes, which may make generalizing the results for more complex tasks incorrect.

8 RELATEDWORK

Component-based Synthesis.Modern IDEs support code-completion based on matching common
prefixes of names (e.g. completing Str into String), or by using the context to narrow the candidates
to well-typed completions [Perelman et al. 2012]. Type-based search engines like Hoogle [Mitchell
2004] generalize the above to find type isomorphisms [Di Cosmo 1993] i.e. single components whose
signaturematch the query. In contrast, our goal is to find combinations of components that implement
some higher-level task. When the task is specified as a type, the problem of search reduces to that
of type inhabitation, i.e. finding terms that inhabit a given query type [Urzyczyn 1997]. One approach
to type inhabitation is proof search [Augusstson 2005; Heineman et al. 2016; Norell 2008], which can
be difficult to scale up to large component libraries. Prospector [Mandelin et al. 2005] introduces a
scalable graph-based inhabitation algorithmwhere the components are unary functions, SyPet [Feng
et al. 2017] uses Petri-nets to generalize graph-based methods to multiple argument functions, and
TyGAR [Guo et al. 2020] shows how to further extend SyPet’s search to polymorphic components
using the idea of succinct type-abstractions introduced by InSynth [Gvero et al. 2013]. However, all
of these require type-based queries which can be problematic for non-experts, and do not consider
the question of end-to-end usability.
User Interaction in Program Synthesis.Although program synthesis is supposed to serve a user,
few papers focus on the user’s role in the synthesis loop. Le et al. [2017] and Peleg et al. [2018]
highlight two models of iterative synthesis, the first driven by the synthesizer and the second by
the user. Our work is in a different setting: API discovery for functional languages.
Several domain-specific synthesizers [Chasins et al. 2018; Chugh et al. 2016; Drosos et al. 2020]

give end-users and data scientists access to synthesis to automate some of their work. These tools
were evaluated against users’ alternative workflow, but their users are not programmers, and the
synthesis domain is far from general. Unlike these,Hoogle+ is a tool for (functional) programmers
and allows users to search for general Haskell code.
Filtering and ranking synthesis results. Ranking and returningmultiple results are two common
approach to handing ambiguous specifications in program synthesis; the two often—but not always—
go hand-in-hand. The FlashX tool family [Gulwani 2011; Polozov and Gulwani 2015] uses a ranking
function to select a single,most likely program fromprograms that satisfy all user-provided examples,
exploring bothhand-crafted [Gulwani 2011] and learned [Singh andGulwani 2015] ranking functions.
Recent work on synthesizing lenses [Miltner et al. 2019] proposed a novel approach to semantic

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

205:26 Michael B. James, Zheng Guo, ZitengWang, Shivani Doshi, Hila Peleg, Ranjit Jhala, and Nadia Polikarpova

ranking based on information theory. Unlike PBE tools that use ranking to select a single result, code
completion tools [Gvero et al. 2013; Raychev et al. 2014] typically present a ranked list of results to the
user, and most commonly rely on learned statistical models and syntactic features. Like these tolls,
Hoogle+ offers the users several ranked candidates, both of synthesis results and of inferred types.
Synthesizers also need to filter their results to discard irrelevant programs. Sypet [Feng et al.

2017] uses Petri-nets to only return programs that use all available arguments.Hoogle+ extends
this filtering: it filters TyGAR results after they are constructed, and uses more extensive criteria.
Test input generation. The extensive literature on automating testing focuses on finding bugs in
manually written code. Our key observation is that these ideas in general, and property-based testing
in particular, can be re-purposed for example-based elimination and comprehension in program
synthesis. Hoogle+ uses the SmallCheck library [Runciman et al. 2008] to filter its candidate
program list and to provide examples to demonstrate the semantics of synthesized programs.
Inferring Types from Examples.A key innovation of Hoogle+ is to allow users to specify their
queriesvia tests thatare thentranslated into types, enablingefficient search.Priorworkontheproblem
of inferring types from tests has a very different context: inferring type annotations for dynamically
typed languages. E.g., Chugh et al. [2011] infer types from run-time logs, An et al. [2011] instrument
Ruby programs to track how each variable is used to then build a constraint system that is solved to
infer method types, and Bonnaire-Sergeant [2019] show how to generalize execution-based guided
type-recovery to handle ad-hoc recursive datatypes as found in Clojure programs. All these differ
from our approach in several ways. First, the different setting: when discovering type annotations,
theyhaveprogramexecution traces tohelpguide type inference. Second, all infermonomorphic types,
while our goal is to infer polymorphic signatures greatly narrowing the synthesizer search space.

9 CONCLUSION
In this work we presentedHoogle+, a component-based synthesizer for Haskell that focuses on end-
to-end usability of program synthesis.Hoogle+ extends a core type-driven synthesis engine TyGAR
in three major ways. First, we present a novel mechanism to infer likely polymorphic type signatures
from tests, which helps beginners, who are not yet fully comfortable with the Haskell type system.
Second, we show how to leverage property-based testing to eliminate meaningless and repetitive
synthesis results,without asking theuser for additional input. Finally,weagain relyonproperty-based
testing to automatically generate examples that demonstrate the behavior of synthesized programs.

To evaluate theusefulness of Hoogle+ relative to a traditional code searchworkflow,we conducted
a user studywith 30 participants, comparing their performance on solving simple programming tasks
with theHoogle search engine vs.Hoogle+. We find that users equipped withHoogle+ perform
their search tasks faster are able to complete 50%more tasks.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their feedback on the draft of this
paper. This work was supported by the National Science Foundation under Grants No. 1943623 and
1911149.

REFERENCES
Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. 2011. Dynamic inference of static types for

ruby. In POPL. Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 459–472.
Lennart Augusstson. 2005. Djinn. https://github.com/augustss/djinn.
Ambrose Bonnaire-Sergeant. 2019. Typed Clojure in Theory and Practice. Ph.D. Dissertation. Indiana University, Bloomington.
Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping Distributed Hierarchical Web Data. In UIST

2018. 963–975.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

https://github.com/augustss/djinn

Digging for Fold: Synthesis-Aided API Discovery for Haskell 205:27

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and Direct Manipulation, Together
at Last. In PLDI ’16 (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 341–354.

RaviChugh, SorinLerner, andRanjit Jhala. 2011. Type InferencewithRun-timeLogs. InWorkshoponScripts to Programs (STOP).
Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In ICFP

’00 (ICFP ’00). Association for Computing Machinery, 268–279.
Nils Anders Danielsson and Patrik Jansson. 2004. Chasing Bottoms. InMathematics of Program Construction (Lecture Notes

in Computer Science), Dexter Kozen (Ed.). Springer, 85–109.
Roberto Di Cosmo. 1993. Deciding Type isomorphisms in a type assignment framework. Journal of Functional Programming

3, 3 (1993), 485–525. http://www.dicosmo.org/Articles/JFP93.pdf Special Issue onML.
Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020. Wrex: A Unified Programming-by-Example

Interaction for Synthesizing Readable Code for Data Scientists. In CHI 2020. Association for Computing Machinery, New
York, NY, USA, 1–12.

Yu Feng, Ruben Martins, YuepengWang, Isil Dillig, and ThomasW. Reps. 2017. Component-based synthesis for complex
APIs. In POPL 2017.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. In POPL 2011, Austin,
TX, USA, January 26-28, 2011. 317–330.

Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, ZitengWang, Ranjit Jhala, and Nadia Polikarpova. 2020. Program
synthesis by type-guided abstraction refinement. Proc. ACM Program. Lang. 4, POPL (2020), 12:1–12:28.

TihomirGvero,ViktorKuncak, IvanKuraj, andRuzicaPiskac. 2013. Complete completionusing typesandweights. InPLDI2013.
George T. Heineman, Jan Bessai, Boris Düdder, and Jakob Rehof. 2016. A Long andWinding Road Towards Modular Synthesis.

In ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I. 303–317.
Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis.

In ICSE ’10, Vol. 1. ACM Press, 215. http://portal.acm.org/citation.cfm?doid=1806799.1806833
Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit Gulwani. 2017. Interactive

Program Synthesis. CoRR abs/1703.03539 (2017). arXiv:1703.03539 http://arxiv.org/abs/1703.03539
David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid Mining: Helping to Navigate the API Jungle.

In PLDI 2005.
Anders Miltner, SolomonMaina, Kathleen Fisher, Benjamin C. Pierce, DavidWalker, and Steve Zdancewic. 2019. Synthesizing

Symmetric Lenses. Proc. ACM Program. Lang. 3, ICFP 2019, Article Article 95 (July 2019), 28 pages.
Neil Mitchell. 2004. Hoogle. https://www.haskell.org/hoogle/.
Ulf Norell. 2008. Dependently Typed Programming in Agda. In AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures.

230–266.
Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming not only by example. In ICSE 2018. ACM, 1114–1124.
Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. 2012. Type-directed completion of partial expressions.

In PLDI ’12, Beijing, China - June 11 - 16, 2012. 275–286.
Gordon Plotkin. 1970. Lattice Theoretic Properties of Subsumption. Edinburgh University, Department of Machine Intelligence

and Perception. https://books.google.com/books?id=2p09cgAACAAJ
Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for inductive program synthesis. ACM SIGPLAN

Notices 50, 10 (2015), 107–126.
Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with Statistical Language Models. SIGPLAN Not.

49, 6 (June 2014), 419–428.
John C. Reynolds. 1969. Transformational systems and the algebraic structure of atomic for-mulas.
Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and lazy smallcheck: automatic exhaustive testing

for small values. InHaskell Symposium 2008 (Haskell ’08). Association for Computing Machinery, 37–48.
Rishabh Singh and Sumit Gulwani. 2015. Predicting a Correct Program in Programming by Example. In CAV - 27th

International Conference, 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. 398–414.
Pawel Urzyczyn. 1997. Inhabitation in Typed Lambda-Calculi (A Syntactic Approach). In TLCA ’97, Nancy, France, April

2-4, 1997, Proceedings. 373–389.
PhilipWadler and Stephen Blott. 1989. How toMake ad-hoc Polymorphism Less ad-hoc. In POPL 1989, Austin, Texas, USA,

January 11-13, 1989. 60–76.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 205. Publication date: November 2020.

http://www.dicosmo.org/Articles/JFP93.pdf
http://portal.acm.org/citation.cfm?doid=1806799.1806833
https://arxiv.org/abs/1703.03539
http://arxiv.org/abs/1703.03539
https://www.haskell.org/hoogle/
https://books.google.com/books?id=2p09cgAACAAJ

	Abstract
	1 Introduction
	2 Overview
	2.1 Specification
	2.2 Elimination
	2.3 Comprehension

	3 Background
	3.1 Type-Guided Abstraction Refinement
	3.2 SmallCheck

	4 Type Inference from Tests
	4.1 Preliminaries
	4.2 From Tests to Types
	4.3 Anti-Unification
	4.4 Type Filtering
	4.5 Type Ranking
	4.6 Support for Ambiguously-Typed Tests
	4.7 Support for Type Classes

	5 Tests for Elimination and Comprehension
	5.1 Elimination
	5.2 Comprehension

	6 Empirical Evaluation
	6.1 Type Inference From Tests
	6.2 Elimination

	7 User Study
	7.1 Study Design
	7.2 Results
	7.3 Discussion
	7.4 Threats to Validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

