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Abstract

With the rise of software-as-a-service and microservice ar-
chitectures, RESTful APIs are now ubiquitous in mobile and
web applications. A service can have tens or hundreds of
API methods, making it a challenge for programmers to find
the right combination of methods to solve their task.

We present APIPHANY, a component-based synthesizer
for programs that compose calls to RESTful APIs. The main
innovation behind APIPHANY is the use of precise semantic
types, both to specify user intent and to direct the search.
APIPHANY contributes three novel mechanisms to overcome
challenges in adapting component-based synthesis to the
REST domain: (1) a type inference algorithm for augment-
ing REST specifications with semantic types; (2) an efficient
synthesis technique for “wrangling” semi-structured data,
which is commonly required in working with RESTful APIs;
and (3) a new form of simulated execution to avoid executing
APIs calls during synthesis. We evaluate APIPHANY on three
real-world APIs and 32 tasks extracted from GITHUB reposi-
tories and STACKOVERFLOW. In our experiments, APIPHANY
found correct solutions to 29 tasks, with 23 of them reported
among top ten synthesis results.
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1 Introduction

Software-as-a-service has emerged as a widely-used means
for developers to leverage third-party software. Developers
might send requests to STRIPE to handle payments or inte-
grate with SLACK to publish notifications, all while making
use of cloud providers to provision various form of storage
and compute. According to recent industry surveys, more
than 80% of respondents’ services offer RESTful APIs [25, 29],
and these APIs are extensive. SLACK, for example, has 174
API methods as of version 1.5.0. Amazon Web Services of-
fers over two hundred products and services, each with
tens or hundreds of API methods. Even with comprehensive
documentation—which is by no means guaranteed—using a
new service can be a daunting proposition.

As an example, consider a question posed on STACKOVER-
FLOW about the Stack API: How do I retrieve all member
emails from a SLACK channel with a given name? The answer
is surprisingly complicated:

1. First, call conversations_list! to retrieve the array of all
channel objects, and then search for a channel object
with a given name and get its ID;

. Next, call conversations_members on the channel ID to
get all user IDs of its members;

. Finally, for each user ID, call users_info to retrieve
a user object u, and then access the user’s email via
u.profile.email.

To come up with this solution, one must be familiar with
channel objects, user objects, and three different API methods.

Component-based program synthesis [9, 13, 17, 20] has
been previously used to help programmers navigate APIs
in Java, Scala, and Haskell. Component-based synthesizers
take as input a type signature and (in most cases) a set of
input-output examples, and return a list of program snippets
that compose API calls and have the desired type and input-
output behavior. This is a powerful approach for navigating
APIs, because it allows developers to start with information

! We shorten method names for brevity and elide the distinction between
REST methods and endpoints, irrelevant in this context.
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Figure 1. Overview of APIPHANY

easily at hand—the types of inputs they have and the out-
puts they desire—and requires no knowledge of which API
methods to apply.

Challenges. Unfortunately, there are three significant chal-
lenges in applying component-based synthesis to RESTful
APIs. First, component-based synthesis relies on types both
for expressing user intent and for efficient search, but types
in REST APIs are quite shallow. For example, in the SLack
API specification, both channel names and emails have type
String, so our example, which transforms a channel name
into an array of emails, would have a very imprecise type
signature String — [String].

Second, RESTful APIs commonly transmit semi-structured
data, i.e. arrays of objects, which may themselves contain
nested objects and arrays. As a result, using an API is often
not as simple as sequencing together a handful of method
calls; instead, the calls must be interleaved with “data wran-
gling” operations such as projections, maps, and filters. These
data wrangling operations are challenging for component-
based synthesis: they are extremely generic, and hence sig-
nificantly expand the search space.

Finally, to compensate for the inherent ambiguity of types,
component-based synthesis typically relies on executing can-
didate program snippets and matching them against user-
provided input-output examples. In a software-as-a-service
environment, this is a complete non-starter: not only is the
user generally unaware of the internal state of the service
and hence unable to provide accurate examples, but exe-
cuting API calls during synthesis can also be prohibitively
expensive due to rate limits imposed by the services and,
even more importantly, can have unrecoverable side effects,
such as deleting accounts or publishing messages.

APIPHANY: synthesis with semantic types. Our core in-
sight is that type-based specifications are actually a good fit
for REST APIs, as long as the types are more fine-grained.
In our example, if the SLack API had dedicated types for

Channel.name and Profile.email, the programmer could spec-
ify their intent as the type Channel.name — [Profile.email].
Although this specification is still somewhat ambiguous,
intuitively it has enough information to narrow down the
synthesis results to a manageable number such that the pro-
grammer can manually inspect the remaining solutions. We
refer to such fine-grained types as semantic types.

In this paper, we present APIPHANY, a component-based
synthesizer for REST APIs guided by semantic types. Fig. 1
shows a high-level overview of our approach, which is struc-
tured into two phases: (1) the analysis phase infers semantic
type annotations for a given API; (2) the synthesis phase uses
these type annotations to perform component-based synthe-
sis. For the SLack API, APIPHANY is able to infer, for example,
that the method conversations_members has the semantic type
Channel.id — [User.id]. At synthesis time, given the type
query Channel.name — [Profile.emaill, APIPHANY returns a
ranked list of programs of this type, where the desired solu-
tion (shown in Fig. 2) appears among the top ten. APIPHANY's
output is expressed in a compact DSL inspired by Haskell’s
monadic do-notation and Scala’s for-comprehensions, which,
however, can be easily translated into the user’s language of
choice for communicating with the APL

Contributions. We present the design, implementation, and
evaluation of APIPHANY, including:

1. Type mining (Sec. 4), a technique that infers semantic
types from a set of witnesses (observed invocations of
APImethods). Witnesses can be generated in a sandbox
or by tapping live production traffic; in either case, they
are collected ahead of time, once per API, which avoids
inducing side effects during synthesis.

2. Efficient synthesis of wrangling operations for semi-
structured data via array-oblivious search (Sec. 5), which
omits challenging array operations during search, and
recovers them later via type-directed lifting.
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1 \channel_name — {

2 C «— conversations_list()

3 if c.name = channel_name

4 uid < conversations_members(channel=c.id)
5 let u = users_info(user=uid)

6 return u.profile.email

7}

Figure 2. Solution for retrieving all member emails from a
Stack channel in APIpHANY DSL.

3. Ranking synthesis results with the help of retrospective
execution (Sec. 6), a type of simulated execution using
previously collected witnesses. Retrospective execu-
tion helps APIPHANY weed out uninteresting programs
(e.g. programs that always return an empty array), re-
ducing the number of synthesis results the user has to
inspect to find their expected solution.

We evaluate APIPHANY on three real-world APIs, and 32
tasks extracted from GITHUB repositories and STACKOVER-
FLOW (Sec. 7). Our evaluation shows that APIPHANY can
find solutions to the majority of tasks (29/32) within 150
seconds. Moreover, semantic types are crucial to its effec-
tiveness: without type mining, APIPHANY can only solve
four tasks. Finally, ranking significantly improves the qual-
ity of reported solutions, increasing the number of correct
solutions appearing in top ten results from 12/29 to 23/29.

2 APIpHANY by Example

In this section we use the task of retrieving all member emails
in a SLAck channel as a running example to illustrate the
APIpHANY workflow depicted in Fig. 1.

2.1 API Analysis by Example

API analysis is performed once per APL It takes as input a
spec in the popular OpenAPI format? and a set of witnesses
(successful API method calls); it produces a spec annotated
with semantic types. OpenAPI specs are publicly available
for most popular APIs.> Witnesses can be generated in a
number of ways, for example, by running an integration test
suite in a sandbox or by passively listening to production API
traffic. We envision witness collection and API analysis be-
ing performed by the API maintainer (or another interested
party), not by regular users of the APIPHANY synthesizer.

OpenAPI specs. Fig. 3 shows a fragment of the OpenAPI
spec provided by SLAck. An OpenAPI spec consists of object
definitions and method definitions. We show definitions of
three objects, user, profile and channel, and two methods,
users_info and conversations_list, relevant to our example.

Zhttps://swagger.io/. APIPHANY supports both OpenAPI v2 and v3.
3SLack OpenAPI spec is available at: https://raw.githubusercontent.com/s|
ackapi/slack-api-specs/master/web-api/slack_web_openapi_v2.json
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As you can see, the spec does provide precise type infor-
mation for some of the locations: for example, the response
of users_info clearly has type user (it is annotated with a
reference to the corresponding object definition). The bulk
of the locations, however, such as the field user.id or the
parameter of users_info, are simply annotated with String,
which is not very helpful for the purposes of type-directed
synthesis. Our goal is to replace these string annotations
with more fine-grained types.

Mining types from witnesses. To this end, we build upon
an algorithm first proposed in [1] that infers types by mining
them from execution traces, based on the insight that equal
values observed at different locations likely have the same
type. More specifically, our type mining algorithm starts by
ascribing a unique semantic type to each String location and
then merges locations that share a value anywhere in the
witness set. As an illustration, consider Fig. 4, which lists two
witnesses for the API methods from our running example.
In this witness set we observe the same value "UJ5RHEG4S"
in three locations: (1) the parameter of users_info, (2) the id
field of a user object (we know from the spec that users_info
returns a User), and (3) the creator field of a Channel object (we
know from the spec that conversations_list returns an array
of channels). Hence we merge all three locations into the
same semantic type. For presentation purposes, we assign
the name User. id to this type, which is derived from location
(2) above. The choice of name is not important, however:
the user is free to refer to this semantic type via any of its
representative locations; for example, Channel.creator also
denotes the same type.

2.2 Program Synthesis by Example

The program synthesis phase of APIPHANY is meant to be
used by regular programmers, any time they need help ac-
complishing a task with one of the supported APIs. The pro-
grammer queries APIPHANY with a type signature built from
semantic types. Although the UI for constructing queries is
beyond the scope of this paper, we envision the program-
mer browsing object definitions and selecting relevant fields
as semantic types. For our running example, the program-
mer knows that they need to go from a channel name to
an array of user emails; they might first look through the
channel object definition and find the name field; they might
then search globally for a field called email and find it in-
side the profile object; hence they settle on the type query
Channel.name — [Profile.email].

The program synthesis phase itself comprises two steps,
beginning with a program search step to generate a list of
candidate programs with a given type, followed by a ranking
step to identify promising candidates (described in Sec. 2.3).

Challenge: components meet control flow. Given the type
query Channel.name — [Profile.email], how would APIPHANY
go about enumerating all programs of this type? This task


https://swagger.io/
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{"user”: {“type”: “object”,
“properties”: {”id”:{"type": “string”},
“name”: {"type": “string”},
“profile”:{“$ref”: “#/definitions/profile”}}},

“profile”: {“type”: “object”,
“properties”: {“display_name”: {“type”: “string”},
“email”: {“type”: “string”}}},
“channel”: {“type”: “object”,
“properties”: {“creator”: {“type”: “string”},
“name”: {“type”: “string”},
“id”: {"type”: “string”}}}
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{"users_info"”:
{“parameter”: [
{”in”: “query”, “name”: “user”, “type”: “string”}],
“responses”: {“200”: {“schema”: {“properties":
{“user": {“$ref”: “#/definitions/user”}}
T,
“conversations_list”:
{“parameter”: [1],
“responses”: {“200”: {“schema”: {“properties":
{“channels”:
{“type”: “array”,
“items”: {“$ref”: “#/definitions/channel”}
+
T

Figure 3. Fragment of the Slack API’s OpenAPI specification. (left) Definitions of user, profile and channel objects. (right)
Parameters and responses of the methods users_info and conversations_list.

GET /conversations_list GET /users_info?userfUJ5RHEG4S
{ {

"ok": true,
"channels": [

"ok": true,
"user": {

{ id":s5)'UJ5RHEG4S" |
"id": "C12345678", %T: "demo_user",

"name": "general", "profile": {
"creator":|"UJSRHEG4S"

"email": "xyz@gmail.com",
Figure 4. Witnesses for two SLack API methods. Arrows
connect equal values observed at different locations. Type
mining ascribes the type user.id to all the boxed locations.

presents a challenge to existing synthesis techniques because
our candidate programs have both a large component library
to choose from—from dozens to hundreds of methods—and
non-trivial control flow—e.g. the solution to our running
example has to loop over the members of a channel. One
line of prior work that scales to large component libraries is
graph-based search using type-transition nets (TTNs) [9, 11];
unfortunately, this approach can only generate sequences of
method calls, and does not support loops.

The APIPHANY DSL. We observe that the loops we need
for manipulating semi-structured data are restricted to it-
erating over (possibly nested) arrays of objects. To capture
this restricted class of programs we have designed a DSL
inspired by Scala’s for-comprehensions, Haskell’s monadic
do-notation, and LINg [? ]. The solution to our running exam-
ple in this DSL is given in Fig. 2. In this language, iteration
over an array is expressed using the monadic bind operation
(written «). For example, the second bind in Fig. 2 has the
effect of performing the subsequent computation for every
element uid of the array returned in line 4:

4 uid < conversations_members(channel=c.id);
5 let u = users_info(user=uid);
6 return u.profile.email

Array-oblivious search. The main idea behind APIPHANY’s
search is that although we cannot directly synthesize the

\channel_name — { \channel_name — {

c « conversations_list() c « conversations_open()
if c.name = channel_name if c.name = channel_name
let uid = c.creator let uid = c.creator
let u = users_info(user=uid) let u = users_info(user=uid)

return u.profile.email

} }

return u.profile.email

Figure 5. A sample of incorrect candidate solutions.

program above using existing TTN-based techniques, we can
synthesize an array-oblivious version of this program, where
we pretend that conversations_members returns a single User. id
instead of an array, and hence we can simply sequence the
two method calls, without monadic binding:

4 let uid = conversations_members(channel=c.id);
5 let u = users_info(user=uid);

6 u.profile.email

To transform an array-oblivious program into the final
solution, APIPHANY lifts it into a comprehension by replac-
ing each 1let binding that causes a type mismatch with a
monadic bind. In our example, the 1et in line 4 causes a type
error (because conversations_members returns [User.id], while
users_info expects a single User.id), while the tet in line 5
does not (since users_info returns a single User); hence lifting
replaces the first tet-binding with « but not the second.

2.3 Ranking via Retrospective Execution

Although semantic types are less ambiguous than primitive
types for expressing user intent, they are still not precise
enough to exactly identify the desired program. For example,
our synthesizer generates more than 1000 candidates for the
type signature Channel.name — [Profile.emaill; clearly, it is
infeasible for the user to manually go through all of them.
Hence, APIPHANY must be able to rank the candidates in
order to show the user a small number of likely solutions.
Fortunately, most of the 1000 candidates are easy to weed
out because they produce uninteresting results. Consider
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two of the candidates depicted in Fig. 5, which differ from
our desired solution (Fig. 2) in the highlighted fragments: the
first program returns the email of the channel’s creator (as
opposed to all of its members), and the second one gets the
list of channels from conversations_open, which is intended
for opening a direct message channel. It turns out that the
second program always fails at run time, because a successful
call to conversations_open requires providing exactly one of
its two optional arguments (a channel ID or a list of users).
The first program executes successfully, but it always returns
a single email, while the user asked for an array of emails.
For these reasons, both of these programs are less likely to
be the intended solution than the program in Fig. 2, which
successfully returns multiple emails at least sometimes.

A natural idea is to test all candidate programs on ran-
dom inputs and rank them based on the results they produce.
Unfortunately, as we have hinted above, there are several bar-
riers to systematically executing many candidate programs
that make calls to REST APIs. First, most REST APIs set a
rate limit on how frequently a user can make method calls
or how many calls a user can make in a day. Second, many
REST API methods are side-effecting. Unlike a self-contained
binary, a remotely-hosted service cannot be restarted from a
clean state for each execution.

Retrospective execution. We propose retrospective execu-
tion (RE) as an efficient, non-side effecting alternative to
program execution. The main idea is to simulate execution
by “replaying” witnesses collected for the API analysis phase.
When evaluating a candidate program, rather than executing
an API call, RE instead searches for a matching witness and
substitutes its response at the call site. If done naively, how-
ever, this process almost always yields failure or an empty
array; so making RE useful for ranking purposes requires
explicitly biasing execution towards meaningful results.

As an illustration, consider executing the program in Fig. 2
using the witnesses in Fig. 4. As the first step, we simulate the
call to conversations_list using the first witness; the response
is an array of channels with names "general”, "private-test",
and "tean". The second step is to filter this array, retaining
only those channels whose name is equal to the input parame-
ter channel_name. If we had sampled the value for channel_name
eagerly, before running the program, we could scarcely have
chosen one of the three names actually present in the array,
so the filtering step (and hence the whole program) would
almost always return an empty array. Instead we sample the
value for channel_name lazily, once we encounter the filter,
picking one of the names present in the array.

Assume that we picked channel_name = "general", and hence
the filter returns the first channel. Next, we simulate the call
to conversations_members on this channel’s ID. Because our
witness set is sparse, we may or may not find an exact match
for this call; in the latter case, we sample the response from
the set of approximate matches, i.e. witnesses with the same
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0= User | Channel | ... object names
f = u.info|... method names
[== in|out|0]id|name]|... field labels
= 1?1 record fields
loc:= ol f. locations
Terms
e u= Expressions
| x| el variable, projection
| f(Ii =e;) | let x =e;e method call, pure binding
|if e=e;e | x «— ¢;e guard, monadic binding
| return e pure value lifting
Eu= Ax.e Top Level Programs
Values
va="..."|[0] | {li =vi} strings, arrays, objects
Types
= Syntactic types
| String strings
|o|[t]| {¢i:ti} named objects, arrays, records
su= t—ot function types
fu= Semantic types
| {loc} loc-sets
|o|[{]1|{¢;: i} named objects, arrays, records
§u= foi function types
Libraries
A== o:t;f:s objectand method definitions
Au= o0:1;f:§ semantic definitions

Figure 6. Syntax of the language 14

method names and argument names,* but not necessarily
the same argument values. Due to approximate matching,
RE results do not always equal the results of a real execution,
but they are still useful for estimating whether a program
candidate is able to produce meaningful outputs. For each
candidate, we run RE multiple times (with different random
seeds) and use the outputs to assign a rank to each candidate.

3 The Core Language

In this section, we formalize the core of APIpHANY’s DSL as
A4, a functional language specialized for manipulating semi-
structured data. The syntax of 1,4 is summarized in Fig. 6.

Types. The types of A4 include syntactic types t (those used
in the OpenAPI spec) and semantic types t, which we infer.
Both categories of types have named objects o, arrays [t], and
records {¢; : t;}.° Records are mappings from field labels to
types; some fields are optional, indicated with a ? before its
label. For example, the record type {id : String, ?time_zone :

string}, has a required field id and an optional field time_zone.

4Because in REST some arguments are optional, the same method can be
called with different subsets of arguments.
SWe write X to denote zero or more occurrences of a syntactic element X.
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The two categories of types differ in their base types: the sole
primitive syntactic type is string,® while the sole primitive
semantic type is a loc-set, i.e. a set of locations.

A location is an object or method name followed by a
sequence of labels, such as user.id. Apart from field labels
that correspond to object fields in the OpenAPI spec, we
introduce three reserved labels—in, out, and 0—for address-
ing method parameters and responses, and array elements,
respectively. For example, c_list.out.0 refers to an element
type of the response array of the method c_list.

Function types are written ¢ — ¢, and multiple arguments
are represented as a record whose fields encode argument
names (with optional fields encoding optional arguments).

A library A models an OpenAPI spec. It contains object
definitions, which bind object identifiers to (record) types,
and method definitions, which bind method names to func-
tion types. A semantic library A, which is the output of type
mining, binds object identifiers and method names to se-
mantic types. As an example, Fig. 7 shows A definitions that
correspond to a portion of the SLack OpenAPI spec (with
method names shortened for brevity), and their correspond-
ing definitions in the semantic library A.

Terms. Values of 1,4 include string literals, arrays, and ob-
jects; objects are mappings from field labels to values. Simi-
larly to Haskell’s do-notation, return e returns an array with
a single element e, and the monadic binding x « ey; e; evalu-
ates e, for each element x of the array e, and concatenates all
resulting arrays. In contrast, the pure binding let x = e;;e;
binds x to the entire result of e; and then evaluates e,. The
guard expression if e; = ey; e evaluates e if the guard holds
and returns an empty array otherwise; guards are restricted
to equalities, since these are the only guards generated by
APIPHANY. At the top level, a program & is an abstraction
with a list of arguments X and body e.

4 Type Mining

In this section we detail APIPHANY’s type mining algorithm,
using the library A in Fig. 7 and the witnesses in Fig. 4 as a
running example. Informally, the idea is to first assign every
string location loc in A a unique type {loc}, and then merge
the types of some locations based on the witnesses.

Assigning location-based types. We formalize the first step
as a judgement A + loc = £, which assigns a semantic type
f to location loc based only on the information present in the
syntactic library A. The reader might be wondering why isn’t
the assigned type f always simply {loc}. This is indeed the
case for string-annotated locations explicitly present in A,
such as User.id or u_info.in.user. But in other cases, location-
based type assignment is more involved; for example:

e A+ u_info.out = User because this location is anno-

tated with a named object type.

%In practice, REST APIs also include integers and booleans; these types are
handled slightly differently in APIPHANY, as discussed in Sec. 7.4.
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e A+ c_members.out = [{c_members.out.0}] because ar-
ray types do not themselves get replaced with loc-sets;
instead, we recursively assign a location-based type to
an array’s element.

o A+ u_info.out.id = {user.id} because type assign-
ment canonicalizes locations inside types to make sure
they explicitly appear in A; to this end, we recursively
assign a type to location’s prefix, A F u_info.out =
User, and then follow the field id of the user object.

The formalization of location-based type assignment is mostly
straightforward and relegated to the technical report [? ].

Merging types via a disjoint-set. Type mining relies on
a variant of the disjoint-set data structure (also known as
union-find [30]). Our disjoint-set DS stores disjoint groups
of pairs (loc, v), where loc is a location and v is a string value.
When two pairs are in the same group, their corresponding
locations have the same semantic type.

DS supports two efficient operations: insert and find. insert
takes a pair (loc, v) and checks whether either of its compo-
nents already appears in DS; if so, it merges the new pair
into the corresponding group, and otherwise puts it into a
new group. find takes a location loc and returns a semantic
type f; internally, find locates the group to which the pair
(loc, _) belongs in DS and returns the loc-set {loc, locy, ...}
that contains all locations in that group.

Type mining algorithm. Fig. 8 presents the top-level algo-
rithm MINETYPES, which takes as input a syntactic library A
and a set of witnesses ‘W, and returns a semantic library A.
A witness W is a triple (f, vin, Uou:s), where f is a method
name and vy, Voy are its argument and response value (mul-
tiple arguments are represented as an object). MINETYPES
operates in two phases: in lines 2-5 it builds the disjoint-set
DS from ‘W and in line 6 it build A from DS.

In the first phase, the algorithm iterates over the witnesses,
registering the input value v;, at the location f.in and the
output value vy, at the location f.out. To this end, we call
a helper function ADDWITNESS, which drills down into com-
posite values (arrays and objects) to get to string literals,
and then inserts each string into DS with its location-based
type. For example, when processing the response from the
first witness in Fig. 4, ADDWITNESS iterates over all chan-
nel objects in the array, and over all fields of each channel
object; once it reaches the value "UJ5RHEG4S", it computes
the type of its location as A + c_list.out.0.creator =
{Channel.creator}, and inserts (Channel.creator, "UJ...") into
DS. Processing the second witness results in inserting the
pairs (u_info.in.user,"u3...") and (User.id, "uJ..."), which
share the same string value, and hence all three pairs get
merged into the same group. Once all the witnesses are added
to DS, its groups represent the final set of semantic types.

In the second phase, the algorithm calls ADDDEFINITIONS
to iterate over all object and method definitions in A, and
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Semantic library A

Syntactic library A

Input: A library A and witnesses ‘W
Output: A semantic library A

Channel: { id: String,

creator: String }

Objects

User: { id: String, User: { id: User.id ,
name: String,

profile: Profile }

Channel: { id: Channel.id ,
name: String, name: Channel.name ,

creator: User.id }

name: User.name ,

profile: Profile }

1: function MINETYPES(A, ‘W)

2: DS « empty disjoint-set

3:  for (f,vin,vour) € W do

4: ApDWITNESS(DS, f,in, vin)

5 ADDWITNESS(DS, f, out, Uoyr)
6: A « ADDDEFINITIONS(A, DS)

7. return A

c_list: c_list: 8: function ADDWITNESS(DS, loc, v)
_<§ {} — [Channel] {} — [Channel] 9: matcho
5 u_info: u_info: 10: case "...":
§ {user: String} — User {user: User.id } — User 11: AF loc = {loc’}
c_members: c_members: 12: DS « insert(DS, loc’, v)
{channel: String} — [String] {channel: Channel.id } — [ User.id ] 13: case [7;]:
14: forall i : ADDWITNESS(DS, loc.0, v;)
Figure 7. Library A that models a portion of the SLack OpenAPI spec and the 15 case {/ = vik:
16: forall i : ADDWITNESS(DS, loc.l;, v;)

corresponding semantic library A. Each gray box is a loc-set type inferred by type
mining, depicted for brevity using a single representative location from the set.

add corresponding definitions to A, relying on find to re-
trieve the semantic type for each location. For example, when
adding the method u_info, we query find(DS, u_info.in.user),
which finds the group mentioned above and returns its loc-
set: {User.id, Channel.creator,...}. If the requested location
is not in DS—because W has no witnesses for the enclos-
ing method or object—it is annotated with the unmerged
location-based type.

5 Type-Directed Synthesis

In this section, we discuss how APIPHANY generates a set
of well-typed programs given a query type, using the same
running example as in previous sections.

Synthesis problem. Formally, our synthesis problem is de-
fined by a semantic library A and a semantic query type $.
For our running example, we use the semantic library from
Fig. 7 and the query type Channel.name — [Profile.email].” A
candidate solution is any program & that type-checks against
§. To formalize this notion, we introduce the program typing
judgment A + & :: §, which is mostly straightforward. We
note only that in a monadic binding x < ey; e;, both e; and
e; must have array types; in a guard if e; = ez;e, e must
have an array type, while e; and e; must have (the same) loc-
set type, since equality is only supported over string values.
Full definition can be found in the technical report [? ].

Type transition nets. To efficiently enumerate well-typed
programs we follow prior work [9, 11] and encode the search
space as a special kind of Petri net, called type-transition
net (TTN). Intuitively, a TTN encodes how each API method

"Here and throughout this section, we write loc-set types using an arbitrarily
chosen representative; the user can query APIPHANY using any locations of
their choosing, and the tool interprets them as the loc-sets they belong to.

Figure 8. Type mining algorithm.

transforms values of one semantic type into another; e.g.
u_info transforms a User.id into a User. Fig. 9 shows a TTN for
our running example. Places (circles) correspond to semantic
types, transitions (rectangles) correspond to methods, and
edges connect methods with their input and output types.
In addition to API methods, the TTN contains transitions
that correspond to A4 projections (e.g. Projyse prorite and
PrOjeofite.emait) ad guards (e.g. filterchannet . name)-

Array-oblivious search. For our search space encoding to
be useful, we need to make sure that every well-typed A4
program corresponds to a path in the TTN. This is where
we encounter a challenge: there is no straightforward way
to encode A4’s monadic bind operation into the TTN. Al-
though prior work on HooGLE+ [11] supports higher-order
functions, the arguments to those functions are syntactically
restricted to variables (i.e. inner lambda abstractions are not
supported), which is insufficient for our purposes. To address
this problem, we introduce a new, array-oblivious TTN en-
coding, which does not distinguish between array types and
types of their elements, and hence does not require monadic
binds. For example, in Fig. 9 c_members returns User instead of
[user], and hence its output can be passed directly to u_info,
without iterating over it.

Search in the TTN. Once the TTN is built, we enumerate
paths from the input to the output type (or rather, array-
oblivious versions thereof). In our example, we place a to-
ken in the input type channel.name and search for a path (a
sequence of transitions) that would get this token to the out-
put type Profile.email, possibly generating and consuming
extra tokens along the way. The bold path in Fig. 9 corre-
sponds to our desired solution from Fig. 2. On this path, we
first fire the transition c_list (which does not consume any
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Channel . name
filterchannel.nane

T

Projchannel.nane ¥ Projchannel.id
A/k;il i
c_members (—O Channel.id

Projuser.id

</\yo—} projuser.profile

User

c_list

Projchannel.creator

l

u_info

Figure 9. A fragment of the type-transition net (TTN) for SLack. Places (circles) are
semantic types; transitions (rectangles) are API methods and data transformations.
The bold path represents the solution to our running example.

tokens) to produce an extra token in channel. Next, we fire
filterchannet.name, Which consumes the two tokens in Channel
and Channel.name, and produces a single token in channel. The
remaining five transitions on the bold path simply move this
one token along until it reaches Profile.email.

Like in prior work [9, 11], a path is only considered valid if
the final state contains exactly one token in the output type
(and no tokens in any other types); this condition ensures
that the generated programs use all their inputs.

Synthesis algorithm. APIPHANY's top-level synthesis algo-
rithm is depicted in Fig. 10. The algorithm first constructs
a TTN N and encodes the query type $ as an initial and
final token placement, I and F; it then enumerates all paths
from I to F in N in the order of length (until timeout). For
each path 7, the algorithm iterates over the corresponding
array-oblivious programs & and lifts them into well-typed
Aa programs. The reason 7 might yield multiple programs is
that the TTN does not distinguish different arguments of the
same type, and hence we must try all their combinations.

Because TTN construction and search for valid paths is
similar to prior work, we omit their detailed description and
refer an interested reader to our technical report [? ].

One difference worth mentioning, however, is that we use
an integer linear programming (ILP) solver to find paths in
the TTN, unlike prior approaches, which relied on SAT/SMT
solvers. We found that although both solvers are equally
quick at finding one valid path, when it comes to computing
all valid paths of a given length, the ILP solver is much more
efficient, as it has native support for enumerating multiple
solutions.

Lifting array-oblivious programs. The function PrRoGs(r)
(line 5 in Fig. 10) converts a TTN path 7 into a set of array-
oblivious programs in A-Normal Form (ANF). Fig. 11 (left)
shows the full array-oblivious program extracted from the
bold path in Fig. 9. As you can see from this example, array-
oblivious programs can be ill-typed: for example, the projec-
tion x7.name in line 4 does not type-check since x; actually

Profile.email

?

Projerofile.email

1

2:

3:

4:
—

5:

6:

Profile

\channel_name —
let x1 = c_list({});

let x2 = x1l.name;
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Input: Semantic library A query type §
Output: Set of candidate solutions &

: function SYNTHESIZE(A, s)

N < BuiLpTTN(A)

I, F < PLACETOKENS(S)
for 7 € Patus(N, I, F) do
for & € Proas(r) do
yield Lirr(A, §, &)

Figure 10. Synthesis algorithm

\channel_name —
let x1 = c_list({});
x1' « x1;
let x2 = x1'.name;

if x2 = channel_name;

1
2
3
4
5 if x2 = channel_name;
6
7
8
9

let x3 = x1.id; let x3 = x1'.id;
let x4 = c_members(channel=x3); let x4 = c_members(channel=x3);
X4' — x4;
let x5 = u_info(user=x4); let x5 = u_info(user=x4');
10 let x6 = x5.profile; let x6 = x5.profile;
11 let x7 = x6.email; let x7 = x6.email;
12 let x7' = return x7
13 x7 x7'

Figure 11. Array-oblivious program built from the bold path
in Fig. 9 (left) and its lifted version (right).

has an array type [channel]. What we really want this pro-
gram to do is to project name (and execute the remaining
steps in the program) for each channel in x;. This can be
accomplished by inserting a monadic binding x; < x; and
using x; instead of x; in line 4 (and elsewhere in the program
where a non-array version of x; is required, such as line 6).
We refer to this process of repairing type errors by inserting
monadic bindings and returns as lifting.?

The function L1rT (line 6 in Fig. 10) takes as input a seman-
tic library A, a query type $, and an array-oblivious program
&, and produces a program &’ that is well-typed at . Fig. 11
(right) depicts the result of lifting the program in Fig. 11
(left) to the query type Channel.name — [Profile.email] with
A from Fig. 7. The full definition of lifting can be found in
the technical report [? ]. Informally, lifting type-checks the
program “line by line”, and whenever it encounters a type
mismatch (in a projection, guard, or a method argument),
it inserts the appropriate number of monadic bindings or

8 A reader familiar with monads might think of the array-oblivious program
as written in the identity monad instead of the list monad, and lifting as
lifting the program back into the list monad.
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returns in order to fix the mismatch. This is always possible
because the only kind of type mismatch we can encounter is
between an actual type [..[f]..] and the expected type £, or
vice versa. One thing worth noting is that we assume that
the top-level return type of the program is an array type:
since the lifted programs have top-level monadic bindings,
they can only return arrays. If the user requests a scalar re-
turn type, we take this into account at the ranking stage by
prioritizing programs that always return singleton arrays.

Completeness. Strictly speaking, array-oblivious search is
incomplete: there are multiple programs that map to the
same array-oblivious program, but lifting only returns a
single, canonical representative. For example, consider the
program in Fig. 11 (right), where we iterate over the array
x1 only once (line 3), and reuse the same “iterator" variable
x1' in lines 4 and 6. An alternative would be to iterate over
x1 the second time before line 6, effectively retrieving names
and IDs from all pairs of channels (instead of the name and
the ID belonging to the same channel). We consider this a
benign incompleteness because it is much less likely that
the user intended to loop twice over the same array. If they
did, we believe they would be able to repair the program by
hand, as we discuss in Sec. 7.4.

6 Ranking

As we mentioned in Sec. 2, the algorithm SYNTHESIZE may
generate hundreds or even thousands of well-typed candi-
date solutions, most of which, however, are uninteresting.
We now formalize how APIPHANY ranks these candidates
with the help of retrospective execution (RE).

Cost computation. To rank the programs, we assign them
a positive cost, and then order them from lowest to highest
cost. To compute the cost of a program &, we retrospectively
execute it multiple times, accumulating execution results in
a set res; retrospective execution is non-deterministic, and
executing a program more times lead to more precise cost
estimates. We then compute the cost of & based on its result
set res and the return type f of the query as follows:

1. The base cost is the size of & in AST nodes.

2. If res = O (all executions have failed), the candidate
receives a large penalty.

3. If res = {[]} (all executions return an empty array), the
candidate receives a medium penalty.

4. Finally, we compare the values v € res with the desired
result type ; recall that A4 programs always return an
array, while # might or might not be an array type. We
assign a small penalty for a multiplicity mismatch, i.e.
if either 7 is a scalar type and any value v has more
than one element, or £ is an array type and all values
v have a single element.
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Retrospective Execution |[(W;I;X|e) = v

X1 €2 X9 &2 2(3(1) =71
(WTixa—>v,2 | e) >0
E-Ir-TrRUE-L
(W2 | if x1 = xp5€) = v
x1 €3 (WiT53 | x2) = vz

(W:T;x1 > v, x> 02,2 | e) D v
(W;T;3 | if x1 = x2;e) > v
(fli = vi.vour) € W
(WiDi3 | f(li = vi)) = Vour
V(f,m,vout) eW.3i: vl{ # Uj
(f.li = ). vour) € W

(WiLE | fli = vi)) = Vour

E-Ir-TRUE-R

E-METHOD-VAL

E-METHOD-NAME

Figure 12. Retrospective execution.

Retrospective execution. We formalize RE as a judgement
(W,T;2 | e) = v, stating that v is a valid result for exe-
cuting the expression e in the environment ¥ (which maps
variables to values). The judgment is also parameterized by
a type context I' and witness set W, used to replay method
calls and sample program inputs. To run a candidate solution
&, we execute its body in an empty environment ¥ = - and
with I storing the types of &’s arguments. As we explain in
more detail below, program inputs are selected lazily, during
execution, in order to maximize its chances of producing
meaningful results.

Replaying method calls. Most of the rules for the RE judge-
ment describe standard big-step operational semantics (they
can be found in the technical report [? ]), but two groups
of rules, shown in Fig. 12, deserve more attention. The first
group of interest includes E-METHOD-VAL and E-METHOD-
NaME, which replay a method call by looking it up in ‘W.
The rule E-METHOD-VAL applies when ‘W contains an exact
match for the current call, i.e. we have previously observed
a call to the same method, with the same parameter names
and parameter values. The rule E-METHOD-NAME applies
when an exact match cannot be found (see first premise);
in this case we pick an approximate match, where only the
method name and parameter names match. Matching param-
eter names is important because many REST API methods
admit optional parameters, and behave very differently based
on which pattern of optional parameters is provided. If an ap-
proximate match cannot be found either, RE fails. Note that
for a given call f(I; = v;), there might be multiple approx-
imate matches in ‘W, which makes RE non-deterministic
(in fact, there can even be multiple precise matches because
services are stateful). Due to hidden state and approximate
matches, the results of RE are not guaranteed to match actual
execution, but our experiments show that they are precise
enough for the purposes of ranking.
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Table 1. APIs used in our experiments. For each API we
report the number of methods |A. f|, min/max number of
arguments per method r4,g, the number of objects |A.o|, and
min/max size of the objects s,p;. We also report the number of
witnesses |'W| we collected for type mining and the number
of methods covered by those witnesses 7.5y

\ APl size | API Analysis
API ‘ |A.f] Narg  |A.o| Sobj ‘ W] neov
SLACK 174 0-15 79 1-70 | 3834 60

STRIPE 300 0-145 399 1-66 | 25402 124
SQUARE 175 0-20 716 1-34 1749 67

Lazy sampling of program inputs. The remaining two
rules in Fig. 12 are responsible for choosing program inputs
so as to bias guard expressions to evaluate to true. We ob-
serve that when inputs are sampled eagerly ahead of time,
guard expressions almost always evaluate to false, causing
RE to return an empty array; as a result, our ranking heuris-
tic cannot distinguish meaningful candidates from those that
return an empty array regardless of the input. To address
this issue, we postpone adding program inputs to the envi-
ronment ¥ until they are used. If the first usage of a program
input is in a guard, the rules E-IF-TRUE-L and E-IF-TRUE-R
pick its value to make the guard true: E-IF-TRUE-L applies
when only the right-hand side of a guard is undefined, and
E-Ir-TRrUE-R applies when the left-hand side or both are un-
defined. If the first usage of an input is in a method call or a
projection, we instead randomly sample from all values of
the same type observed in “W.

7 Evaluation

We implemented APIPHANY in Python, except for retrospec-
tive execution, where we used Rust for performance reasons.
We used the Gurobi ILP solver [12] v9.1 as the back-end for
TTN search. We ran all the experiments on a machine with
an Intel Core i9-10850K CPU and 32GB of memory.

We designed our empirical evaluation to answer the fol-
lowing research questions:

(RQ1) Can APIPHANY find solutions for a wide range of real-
istic tasks across multiple popular APIs?

(RQ2) Is type mining effective and necessary for enabling
type-directed synthesis?

(RQ3) Is retrospective execution effective and necessary for
prioritizing relevant synthesis results?

API selection. For our evaluation, we selected three popular
REST APIs: the SLACK communication platform and two
online payment platforms, STRIPE and SQUARE. We selected
these APIs because they are widely used and have both an
OpenAPI specification and a web interface, which allowed
us to set up the test environment and collect witnesses easily.
As shown in Tab. 1, these APIs are quite complex: each has
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over a hundred methods with up to 145 arguments; all three
feature optional arguments. The three APIs also contain a
large number of object definitions, with up to 70 fields.

Experiment setup: type mining. Recall that type mining
relies on a witness set ‘W. Witnesses are straightforward
to collect for API owners, or when an integration test suite
is publicly available; neither was the case in our setting.
Instead, we collected witnesses by observing traffic from
the services’s web interface, and then enhancing this initial
(very sparse) witness set via random testing; this process is
described in more detail in our technical report [? ]. As shown
in Tab. 1, we collected between 1.7K and 25K witnesses per
API, which covered 30-40% of all methods. It is hard to obtain
full coverage for these closed source APIs as an outsider, for
instance, because many methods are only available to paid
accounts; our experiments show, however, that APIPHANY
performs well with this witness set.

Benchmark selection. For each API, we extracted program-
ming tasks from STACKOVERFLOW questions that mention
this API as well as GiITHUB repositories that use the API.
After excluding the tasks that were out of scope of our DSL,
we manually translated each of the remaining tasks from a
natural-language description or a code snippet into a type
query, resulting in 32 benchmarks (see Tab. 2). Apart from
our running example (benchmark 1.1), these include, for in-
stance: “Send a message to a user given their email” in SLack
(1.2), “Create a product and invoice a customer” in STRIPE
(2.3), and “Delete catalog items with given names” in SQUARE
(3.10). As noted in Tab. 2, many of these tasks are effectful:
they require creating, modifying, or deleting objects.

Each benchmark comes with a “gold standard” solution:
the accepted solution on STACKOVERFLOW or the snippet we
found on GiTHUB. We manually translated these solutions
into APIPHANY’s DSL. As shown in the “Solution Size” por-
tion of Tab. 2, these solutions range in complexity from 7
to 22 AST nodes, containing up to three method calls and
guards and up to seven projections, which makes them non-
trivial for programmers to solve manually. A complete list
of tasks, type queries, and solutions can be found in [? ].

Experiment setup: program synthesis. For each of the 32
benchmarks, we ran the synthesizer with a timeout of 150
seconds. For each new candidate generated, we estimated its
cost using 15 rounds of RE and recorded the synthesis time
(including both TTN search and RE time). After the time-
out, we checked whether the gold standard solution appears
among the generated candidates and compared its RE-based
rank vs the original rank at which it was generated (based
on path length). Below we report average time and median
rank over three runs to reduce the impact of randomness.

7.1 RQ1: Overall Effectiveness

The last four columns of Tab. 2 detail APIpHANY’s perfor-
mance on the 32 synthesis benchmarks. APIPHANY finds the
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Table 2. Synthesis benchmarks and results. Benchmarks
marked with § are effectful. For each benchmark we report
the size of the desired solution: AST, ng, ny and ng corre-
spond to number of AST nodes, method calls, projections
and guards, respectively. We also report the time to find the
correct solution (in seconds), its rank without RE (ryig), and
the lower and upper bound on its rank with RE (rgg and rgg ).
‘-” means no solution is found in 150 seconds.
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Figure 13. Comparison of synthesis performance between
APIPHANY and its two variants that do not use type mining.

average APIPHANY takes 17.8 seconds to find the desired
solution (median time 1.3 seconds).

API ‘ D ‘ Solution Size ‘ Time ‘ Ra—nk
‘ ‘ AST ng np ng ‘ (sec) ‘ Torig TRE rgg
1.1 17 3 6 1] 8335|2523 5 5
1.2f 12 3 5 0 56| 2224 10 10
L |13 6 3 7 0 - - - -
g |14 14 2 4 1 13| 489 24 31
a |15t 0 2 3 0 34| 78 5 5
167 9 2 2 0 17 573 8 19
177 12 2 4 1 13 757 8 9
1.8 2 3 0| 42016438 29 30
2.1f 9 2 2 0] 954 4952 3 3
2.21 10 2 2 0| 924| 4854 4 4
231 12 3 2 01212 6363 1 1
2.4 8 1 2 1 0.5 31 1
2.5 8 2 2 0 1.0 10 4 4
g | 26t 9 3 2 0| 122 270 3 3
2 |27 5.1 2 0| 06 4 2 2
@ 128 6 2 7 1| 202 679 17 17
2.9 6 1 2 0 0.5 2 1 1
2.107 0 2 3 0 7.8 187 6 6
2.117 7 2 1 0| 172] 4% 6 6
2.127 1 3 2 0 - - - -
2.13% 0 3 2 0 - - - -
3.1 4 1 1 0 0.2 2 1 1
3.2 6 1 4 3 0.5 10 4 4
3.3 0 1 3 1 0.4 6 1 1
34 5 1 2 0 0.7 2 1 1
g |35t 14 2 3 0 2.2 99 2 2
% 3.6 5 1 2 0] 02 111
A |37 6 1 2 0 0.3 7 4 4
3.8 9 1 3 0 0.7 11 1
3.9 8 1 2 1 0.2 2 2
3.107 6 2 5 1 1.9 174 10 12
3117 8 2 3 0 1.0 68 16 16

correct solution for 29 benchmarks. The remaining three
benchmarks fail with a timeout because their type queries
are too ambiguous; for example, in benchmark 1.3 (“Get un-
read messages of a user”) the type query has no means to
specify that we are only interested in unread messages; as
a result, the solution is drowned among thousands of other
programs that map a user ID to messages.

We plot the number of benchmarks solved as a function
of time (including RE) in Fig. 13. As the plot shows, majority
of benchmarks (19/32) can be solved within five seconds. On

Takeaway: APIPHANY is able to solve 91% of tasks from
three real-world APIs.

7.2 RQ2: Type Mining

Recall that type mining involves replacing primitive syntactic
types in the spec with unique location-based types, and then
merging those based on the witness set to obtain semantic
types. The merging process is not perfect: it might fail to
merge two location that should have the same type because
the witness set lacks evidence to justify the merge; or it
might spuriously merge two locations if they share a value by
chance. It is hard to measure the accuracy of inferred types
directly, since we do not have an oracle for semantic types.
Instead, we evaluate type mining indirectly in two ways:
1) we run an ablation study to measure its impact on the
overall performance of the synthesizer, and 2) we perform a
small-scale qualitative analysis of inferred types.

Ablation study. For this experiment, we compare the perfor-
mance of APIPHANY and its two variants: (a) APIPHANY-SYN,
which builds the TTN directly from syntactic types, and
(b) APIrHANY-LOC, Which builds the TTN from (unmerged)
location-based types. We plot the number of benchmarks
solved by each variant as the function of time in Fig. 13.

As expected, both variants perform poorly: APIPHANY-
SYN only solves 4/32 benchmarks and APIPHANY-LOC solves
5. All these benchmarks are “easy” (solved by APIPHANY in
under a second). Intuitively, the two variants represent two
extremes in terms of type granularity. Syntactic types are
too coarse-grained (all string locations have the same type),
which leads TTN search to return too many well-typed can-
didates. As a result, APIPHANY-SYN struggles to solve all but
the simplest tasks, with many benchmarks running out of
memory. Location-based types, on the other hand, are too
fine-grained (each string location has a unique type), which
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leads to most desired solutions simply being ill-typed, be-
cause there is no way for one method to use values returned
by another. The solutions to all of the five benchmarks solved
by APIpANY-LOC have only one method call with no pa-
rameters, followed by several projections or filters.

As you can see from Fig. 13, APIPHANY drastically outper-
forms both variants. This result indicates that type mining
strikes a good balance between coarse- and fine-grained
types: all 32 benchmarks have a well-typed solution in terms
of the mined types, and APIPHANY is able to find most of
them within a reasonable time.

Qualitative analysis. To give a more direct account of the
quality of inferred semantic types, we randomly sampled
five methods from each API (among the methods covered
by the collected witnesses), and manually inspected the in-
ferred types to check if they match our expectations. More
specifically, for each string location in a method spec, we
pick a location type loc*, which we deem most natural for
a programmer to use in a type query (for example, for the
parameter to users_info, loc* = User.id); we consider the in-
ferred loc-set type sufficient if it contains loc*. The detailed
results appear in the technical report [? .

In the methods we examined, type mining was able to infer
a sufficient semantic type for all responses, required param-
eters, and about half of optional parameters. The remaining
optional parameters were assigned unmerged location types,
because they were never used in our witness set. This is
almost unavoidable, because of the sheer number of obscure
optional parameters in real-world APIs (which, fortunately,
are rarely needed to solve programmer’s tasks).

Recall that the other failure mode of type mining is spuri-
ously merging unrelated locations. We did not observe any
spurious merges among the randomly sampled methods, but
anecdotally we did encounter one such merge elsewhere in
the Slack API: between Channel.name and Message.name. Note
that spurious merges might slow down the search and pro-
duce some “semantically ill-typed” solutions, but they do not
prevent APIPHANY from finding the desired solution.

Takeaway: Type mining increases the percentage of
solved benchmarks from 12% to 91%.

7.3 RQ3: Ranking

To measure the effectiveness of RE-based ranking, we com-
pare the last three columns of Tab. 2: r,; denotes the rank
of the desired solution in the order it was generated by TTN
search (which is based on path length, and hence correlated
with solution size); rgg denotes the RE-based rank of the
solution at the time it was generated, and rgg denotes its RE-
based rank by the timeout (which can be lower than rgg as
other candidates generated later might end up being ranked
higher). We report both of these RE-based ranks because we
envision an APIPHANY user inspecting the candidate solu-
tions some time between they are generated and the timeout,
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Figure 14. Number of benchmarks whose solution is re-
ported within a given rank. The filled blue area is the range
of ranks one might get depending on when they inspect the
candidates. The shaded area is the 95% confidence interval.

and hence the relevant rank value is between rgg and rgg.
We plot the number of benchmarks whose solutions lie at or
below each rank in Fig. 14, with the range between rgg and
rgg represented as a filled area.

As you can see from Fig. 14, RE-based ranking signifi-
cantly increases the chances that the desired solution makes
the short-list of candidates. In particular, without RE-based
ranking only 8 benchmarks (28% of solved) return the correct
solution in top five, and only 12 (41%) return it in top ten; in
contrast, with RE-based ranking, 19 (65%) benchmarks return
the correct solution in top five (after timeout), and 23 (79%)
in top ten. Moreover, as we can see from Tab. 2, the solution’s
rank never gets worse after RE, in all but two cases it strictly
improves, and for all long-running benchmarks it improves
drastically (the average rank improves from 2230.5 to 7.0).

A closer look at the six benchmarks that do not land in top
ten after RE reveals two main reasons for these suboptimal
rankings. In most cases the solution is simply large, and there
are many smaller candidates that are still meaningful. For
example, the query “Delete all catalog items" (3.11) takes no
arguments and returns an array of all deleted items; there are
many valid and simple ways to construct an array of catalog
items without deleting them. In a few cases, APIphany fails
to throw out meaningless programs due to the imprecision
of retrospective execution. For example, in 1.6 it reports a
solution that posts an update to a given channel with a given
timestamp, even though this timestamp might be invalid
for this channel; APIphany instead thinks that this call al-
ways succeeds by relying on approximate matches during
retrospective execution.

We also recorded the time APIPHANY takes to compute the
cost for all generated candidates (which involves executing
each candidate 15 times). Although APIPHANY generates
thousands of well-typed candidates for most benchmarks,
cost computation only takes about 1% of total synthesis time.
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Takeaway: RE-based ranking takes a negligible amount
of time and increases the percentage of correct solutions
reported in top ten from 41% to 79%.

7.4 Discussion and Limitations

Witness generation. One threat to validity of our evalua-
tion is that the results of type minings (and therefore synthe-
sis) depend heavily on the witness set. In particular, if our
benchmarks required methods that are not covered by the
witness set, APIPHANY most likely would not be able to solve
them, since they would be ill-typed with inferred semantic
types. We ran our experiments using a particular witness set,
which we collected using one methodology (described in the
technical report [? ]); our findings might not generalize to
using APIPHANY with witness sets collected by other means.

Effectful methods. We observe that effectful methods in
REST APIs have an interesting property: they make the ef-
fect explicit in their response. For example, the method for
posting a message on SLACK also returns the message object,
and the method for deleting a catalog item in SQUARE returns
the ID of the deleted item (instead of just returning void).
This property makes REST APIs particularly suitable for type-
directed synthesis and expressing user intent with types: for
example, the query “Send a message to a user with a given
email” can be expressed as the type Profile.email — Message
instead of a much less informative type Profile.email — void.
The downside, of course, is that the return type of an ef-
fectful method might not be obvious to the user (for ex-
ample, does deleting a catalog item return an object or its
ID?) One way to overcome this limitation is to let the user
specify the name of the last method they want to call (e.g.
catalog_object_delete) instead of the output type; this kind of
specification is straightforward to integrate into TTN search.

DSL restrictions. In our search for benchmarks, we encoun-
tered (very few) snippets that were inexpressible in our DSL
because they required functional transformations on prim-
itive values, as opposed to just structural transformations
on objects and arrays, for example: “Get all members of a
channel and concatenate them together". We consider such
functional transformations beyond the scope of APIPHANY
because its type-based specifications are too coarse to distin-
guish between different functional transformations. This is
also the reasoning behind our design decision to only support
equality inside guards, as opposed to more general predi-
cates: if the specification cannot distinguish between, say, =
and <, there is little use in generating programs with both.
More generally, we view programs synthesized by APIPHANY
as a starting point, which helps the programmer figure out
how to plumb data through a set of API calls; we envision
the user building on top of those programs to add functional

PLDI °22, June 13-17, 2022, San Diego, CA, USA

modifications and more expressive predicates. This inter-
action model motivates both our DSL restrictions and our
type-based specifications.

Value-based location merging. Value-based merging works
well for strings, since their large domain makes it unlikely
that two string locations share a value by chance. It works
less well for other primitive types, such as integers and
booleans. To reduce the risk of spurious merges, our im-
plementation performs value-based merging only for strings
and large integers (> 1000), but not for booleans or small
integers. In the future, we plan to investigate more sophis-
ticated approaches to location merging. One idea is to use
probabilistic reasoning to estimate the likelihood of two lo-
cations having the same type based on (1) how common a
value is across locations and (2) what proportion of values is
shared between the two locations. Another approach is to
cluster locations using NLP techniques, such as sentiment
analysis of object and field names, as well as documentation.

User interface. Another important direction for future work
is to investigate usable ways of specifying semantic type
queries and comprehending synthesis results. In particular,
existing work from the HCI community [? ? ] might help
users quickly explore a large space of related candidate solu-
tions, thereby mitigating the limitations of ranking.

8 Related Work

APIPHANY is a component-based synthesizer and primarily
compares with related work in this space. It also draws on
techniques from specification mining and type inference.

Type-directed component-based synthesis. The goal of
component-based synthesis is to find a composition of com-
ponents (library functions) that implements a given task. In
type-directed component-based synthesis both the task and
the components are specified using types. The traditional
approach to this problem based on proof search [4, 14, 22]
scales poorly with the size of the component library. An
alternative, more scalable graph-based approach was intro-
duced in PrRosPECTOR [20] for unary components, and gen-
eralized to n-ary components in SYPET [9], by replacing
graphs with Petri nets. TYGAR [11] further extends SYPET’s
search to polymorphic components using the idea of abstract
types, which are inspired by succinct types from another
component-based synthesizer, INSYNTH [13]. APIPHANY’S
program search phase is using the Petri net encoding from
SYPET and TYGAR with minor adaptations (support for op-
tional arguments and ILP encoding). Our array-oblivious
encoding is related to abstract and succinct types in that it
helps make the Petri net smaller, but it is also substantially
different in that, unlike prior work, it can efficiently encode
a certain class of higher-order programs (array comprehen-
sions) into the Petri net.

API navigation. Beyond type-directed synthesis, other work
focuses on smart auto-completion [19, 23, 26] but relies on
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static analysis and mining client code, which APIpHANY
does not require. Among tools that leverage dynamic analy-
sis, EDSYNTH [34] uses test executions to generate snippets
that involve both API calls and control structures. MATCH-
MAKER [36] and DEMOMATCH [35] are similar to APIPHANY
in that they rely on observed program traces to suggest code
that uses complex APIs (the former from types and the lat-
ter from demonstrations). All these techniques work in the
context of Java, and hence assume that sufficiently precise
types are already present.

SOL synthesis. The problem of generating projections and
filters is related to synthesis of SQL queries [32, 33]. Exist-
ing SQL synthesis techniques are not directly applicable to
our problem domain, because (1) our programs also contain
arbitrary API method invocations, and (2) we manipulate
semi-structured data instead of relational data.

API discovery and specification mining. A complimen-
tary approach to API navigation using program synthesis is
to infer specifications [1, 21, 27] or example usages [5, 7, 16]
to help the user understand the API better. APIPHANY’s type
mining is inspired by Ammons et al. [1], where they build
probabilistic finite state automata representing data and tem-
poral dependencies between API methods. APIPHANY imple-
ments a simpler form of their algorithm, which discovers
data flows (but not temporal dependencies), but the novelty
lies in using this information to drive program synthesis.

Type mining is also related to prior work on inferring
type annotations for dynamically typed languages from exe-
cutions [2, 6, 8]. However, this work is for structural types,
whereas we infer domain-specific nominal types.

Simulated execution. An alternative to our retrospective
execution is to synthesize a model of the API, and evaluate
program candidates against that model. Previous work [15,
18] synthesizes models for complex frameworks and opaque
code; our retrospective execution is simpler: it skips the extra
step of model synthesis.

Ranking solutions. Specifications in program synthesis are
often ambiguous, so synthesizers have to rank their candi-
date solutions and return the top result(s). Existing tools most
commonly rely on hand-crafted [10] or learned [13, 26, 28]
ranking functions based on syntactic features of generated
programs. HOOGLE+ [17] is most similar to APIPHANY in that
it ranks programs based on the results of their execution,
using heuristics like whether the program always fails, and
how similar it is to other candidates.
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