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Task: retrieve all member emails from a Slack channel given the channel name

channel_name => {


  conversations_list()


  }



4

Overview /  Running Example

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


  }

Task: retrieve all member emails from a Slack channel given the channel name
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Overview /  Running Example

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


  })}

Task: retrieve all member emails from a Slack channel given the channel name
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Overview /  Running Example

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                                          })


  })}

Task: retrieve all member emails from a Slack channel given the channel name
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Overview /  Running Example

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

Task: retrieve all member emails from a Slack channel given the channel name



8

Overview /  Running Example

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

Task: retrieve all member emails from a Slack channel given the channel name

Can a synthesizer find this program?
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Specifications /  What Are Good Specifications For REST APIs?

Specifications

Components
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Specifications /  Types as Specifications?

I/O examples natural language

coarse-grained

conversations_members :: String -> [String]

types

large objects

side effects too vague
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Our Contribution /  Semantic Types as Specifications!

coarse-grained

semantic types

large objects

side effects

I/O examples natural language

too vague
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Our Contribution /  APIphany

APIphany
A program synthesizer for REST APIs guided by semantic types
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Specifications /  Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: ?
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Specifications /  Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: “channel name” -> [“user email”]

How to represent?



30

Specifications /  Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query:

Insight 1: object fields as types!

“channel name” -> [“user email”]
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Type Mining /  Spec Types

Objects

User    { id      :: String

        , profile :: Profile }


Profile { email   :: String

        , phone   :: String  }


Channel { creator :: String

        , name    :: String

        , id      :: String  }



User    { id      :: String

        , profile :: Profile }


Profile { email   :: String

        , phone   :: String  }


Channel { creator :: String

        , name    :: String

        , id      :: String  }
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Type Mining /  Semantic Types

Objects

User.id



User    { id      :: User.id

        , profile :: Profile }


Profile { email   :: Profile.email

        , phone   :: Profile.email }


Channel { creator :: String

        , name    :: String

        , id      :: String  }
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Type Mining /  Semantic Types

Objects

Channel.creator
Channel.name
Channel.id

Profile.phone
Profile.email
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Specifications /  Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: Channel.name -> [Profile.email]
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User    { id      :: User.id

        , profile :: Profile }


Profile { phone   :: Profile.phone

        , email   :: Profile.email }


Channel { creator :: Channel.creator

        , name    :: Channel.name

        , id      :: Channel.id }
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Objects Methods



User    { id      :: User.id

        , profile :: Profile }


Profile { phone   :: Profile.phone

        , email   :: Profile.email }


Channel { creator :: Channel.creator

        , name    :: Channel.name

        , id      :: Channel.id }
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Type Mining /  Semantic Type Inference

users_info :: String -> User


conversations_members :: String -> [String]


conversations_list :: [Channel]

Objects Methods

Insight 2: mine from traces!
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Type Mining  /  Semantic Type Inference

Invocation Method Spec Type

users_info(“UJ5RHEG4S”) == 


  { "id": “UJ5RHEG4S”


  , "name": "demo_user"


  , "profile": 


    { “email": “xyz@gmail.com”


     …


    }


  }

users_info ::   String   -> User
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Type Mining  /  Semantic Type Inference

users_info ::   String   -> User

Invocation Method Spec Type

users_info("UJ5RHEG4S") == 


  { "id": "UJ5RHEG4S"


  , "name": "demo_user"


  , "profile": 


    { "email": "xyz@gmail.com"


     …


    }


  }

User.id



User    { id      :: User.id

        , profile :: Profile }


Profile { phone   :: Profile.phone

        , email   :: Profile.email }


Channel { creator :: Channel.creator

        , name    :: Channel.name

        , id      :: Channel.id }
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Type Mining /  Semantic Library

users_info ::   String  -> User


convs_members ::   String     -> [  String  ]


convs_list :: [Channel]

Objects Methods

User.id

Channel.id User.id



User    { id      :: User.id

        , profile :: Profile }


Profile { phone   :: Profile.phone

        , email   :: Profile.email }


Channel { creator :: Channel.creator

        , name    :: Channel.name

        , id      :: Channel.id }
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Type Mining /  Semantic Library

users_info ::   String  -> User


convs_members ::   String     -> [  String  ]


convs_list :: [Channel]

Objects Methods

User.id

Channel.id User.id

Are we done?



User    { id      :: User.id

        , profile :: Profile }


Profile { phone   :: Profile.phone

        , email   :: Profile.email }


Channel { creator :: Channel.creator

        , name    :: Channel.name

        , id      :: Channel.id }
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Type Mining /  Semantic Library

users_info ::   String  -> User


convs_members ::   String     -> [  String  ]


convs_list :: [Channel]

Objects Methods

User.id

Channel.id User.id

A user ID



User    { id      :: User.id

        , profile :: Profile }


Profile { phone   :: Profile.phone

        , email   :: Profile.email }


Channel { creator :: Channel.creator

        , name    :: Channel.name

        , id      :: Channel.id }
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Type Mining /  Semantic Library

users_info ::   String  -> User


convs_members ::   String     -> [  String  ]


convs_list :: [Channel]

Objects Methods

A user ID Traces!

User.id

Channel.id User.id
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Type Mining  /  Semantic Type Inference

Channel { creator :: Channel.creator


        , name    :: Channel.name


        , id      :: Channel.id }

Invocation Object Spec Type

{ "id": "C123"


, "name": “general"


, "creator": "UJ5RHEG4S"


, ...


}
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}
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Channel { creator :: Channel.creator
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}
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Type Mining  /  Semantic Type Inference

Channel { creator :: Channel.creator


        , name    :: Channel.name


        , id      :: Channel.id }

Invocation Object Spec Type

User.id



User    { id      :: User.id

        , profile :: Profile }


Profile { phone   :: Profile.phone

        , email   :: Profile.email }


Channel { creator :: Channel.creator

        , name    :: Channel.name

        , id      :: Channel.id }
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Type Mining /  Semantic Library

users_info ::   String  -> User


convs_members ::   String     -> [  String  ]


convs_list :: [Channel]

Objects Methods

User.id

User.id

Channel.id User.id
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Type-Directed Synthesis /  Program Ranking

Channel.Name -> [Profile.Email]

Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}
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Type-Directed Synthesis /  Program Ranking

Channel.Name -> [Profile.Email]

Candidate #1Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { let uid = c.creator 


               let u = users_info(user=uid)


               return u.profile.email })


  })}
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Type-Directed Synthesis /  Program Ranking

Channel.Name -> [Profile.Email]

Candidate #1Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { let uid = c.creator 


               let u = users_info(user=uid)


               return u.profile.email })


  })}

Always returns a singleton array
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Type-Directed Synthesis /  Program Ranking

Channel.Name -> [Profile.Email]

Candidate #2Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_open()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}
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Type-Directed Synthesis /  Program Ranking

Channel.Name -> [Profile.Email]

Candidate #2Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_open()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

Always fails
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Type-Directed Synthesis /  Program Ranking

Candidate #2

Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_open()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { let uid = c.creator 


               let u = users_info(user=uid)


               return u.profile.email })


  })}

Candidate #1
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Type-Directed Synthesis /  Program Ranking

Candidate #2

Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_open()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { let uid = c.creator 


               let u = users_info(user=uid)


               return u.profile.email })


  })}

Candidate #1Execute programs?
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Program Ranking /  Challenges in REST API Execution

Service providers set a rate limit
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Program Ranking /  Challenges in REST API Execution

Many API calls have side effectsService providers set a rate limit
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Program Ranking /  Retrospective Execution

Candidate #2

Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_open()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { let uid = c.creator 


               let u = users_info(user=uid)


               return u.profile.email })


  })}

Candidate #1
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Program Ranking /  Retrospective Execution

Candidate #2

Desired Solution

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_open()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { let uid = c.creator 


               let u = users_info(user=uid)


               return u.profile.email })


  })}

Candidate #1Insight 3: replay from execution traces!




...


  let uid = channel_creator(c)


  let u = users_info(user=uid)


...
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Program Ranking /  Retrospective Execution

ProgramExecution traces
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Program Ranking /  Retrospective Execution

channel_creator

users_info

channel_creator

Execution traces Program

...


  let uid = channel_creator(c)


  let u = users_info(user=uid)


...
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Program Ranking /  Retrospective Execution
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Execution traces Program
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  let uid = channel_creator(c)


  let u = users_info(user=uid)


...
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Program Ranking /  Retrospective Execution

channel_creator

channel_creator

Execution traces Program

users_info

exact execution

...


  let uid = channel_creator(c)


  let u = users_info(user=uid)


...
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Program Ranking /  Retrospective Execution

channel_creator

channel_creator

Execution traces Program

...


  let uid = channel_creator(c)


  let u = users_info(user=uid)


...

users_info
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Program Ranking /  Retrospective Execution

channel_creator

users_info

channel_creator

Execution traces Program

...


  let uid = channel_creator(c)


  let u = users_info(user=uid)


...
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Program Ranking /  Retrospective Execution

channel_creator

users_info

channel_creator

Execution traces Program

approximate execution

...


  let uid = channel_creator(c)


  let u = users_info(user=uid)


...



channel_name => {


  conversations_open()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { let uid = c.creator 


               let u = users_info(user=uid)


               return u.profile.email })


  })}

channel_name => {


  conversations_list()


   .filter(c => c.name == channel_name)


   .map(c => { conversations_members(c.id)


     .map(uid => { let u = users_info(user=uid)


                   return u.profile.email })


  })}
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score:50

score:5

score:-1

Candidate #2

Desired Solution

Candidate #1
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APIphany /  Architecture

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20
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Evaluation / Solved Benchmarks

3 real-world APIs


32 benchmarks from StackOverflow and GitHub
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Evaluation / Solved Benchmarks

Sample benchmark #1:

Task: Retrieve member emails from a channel name
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Evaluation / Solved Benchmarks

Sample benchmark #2:

Task: Delete the payment source for a customer
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Evaluation / Solved Benchmarks

Solves 29 out of 32 
within 150s timeout
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Evaluation / Spec vs Semantic Types

Solves 4 out of 32
Spec Types
Semantic Types

Max # of benchmarks
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Evaluation / RE vs No RE

Desired solutions ranked in top 10 
for 12 out of 32
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Evaluation / RE vs No RE

lower than 1000
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Evaluation / RE vs No RE

Desired solutions ranked in top 10 
for 23 out of 32
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