APIphany: Type-Directed Program Synthesis For REST APIs

Zheng Guo*, David Cao*, Davin Tjong*, Jean Yangf, Cole Schlesingert, Nadia Polikarpova*

* University of California San Diego

t Akita Software

B Overview / Running Example

Slack API: Retrieve all member emails from a slack channel

Asked 5 years, 4 months ago Modified 13 days ago Viewed 24k times

Given the name of a slack channel, is there a way to retrieve a list of emails of all the members in
that channel? | tried looking in the slack api docs but couldn't find the method | need to make

16 this happen (https://api.slack.com/methods).

email channel slack-api slack

Share Improve this question Follow asked Jan 10, 2017 at 8:10

userb5844628
377 ©1 o4 12

B Overview / Running Example
Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {

conversations 1list()

B Overview / Running Example
Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {

conversations 1list()

.Ffilter(c = c.name = channel_name)

B Overview / Running Example
Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {
conversations 1list()

.Ffilter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

B Overview / Running Example
Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {
conversations 1list()

.Ffilter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

.map(uid = { let u = users_info(user=uid)
)
b}

B Overview / Running Example
Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {
conversations 1list()

.Ffilter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

.map(uid = { let u = users_info(user=uid)
return u.profile.email })

b}

B Overview / Running Example

Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {
conversations 1list()

Can a synthesizer find this program?

.map(uid = { let u = users_info(user=uid)
return u.profile.email })

b}

B Overview / Program Synthesis

B Overview / Program Synthesis

Specifications

B Overview / Program Synthesis

AT

Specifications

Components

B Overview / Program Synthesis

AT

Specifications

Components

=)

B Overview / Program Synthesis

AT

Specifications

=)

Synthesizer

Components

B Overview / Program Synthesis

AT

Specifications

=)

Synthesizer

Components

B Overview / Program Synthesis

Al
Specifications » ﬁ » ‘E

-; 23 Synthesizer Programs

Components

. Specifications / What Are Good Specifications For REST APIs?

Specifcation - 'ﬁ' N E

-; 23 Synthesizer Programs

Components

. Specifications / Examples as Specifications?

/0O examples

. Specifications / Examples as Specifications?

/0O examples

@ side effects

. Specifications / Examples as Specifications?

/0O examples

@ side effects

@ large objects

. Specifications / Examples as Specifications?

/0O examples

@ side effects

. Specifications / NL as Specifications?

/0O examples natural language

@ side effects

. Specifications / NL as Specifications?

/0O examples natural language

@ side effects @ too vague

. Specifications / NL as Specifications?

/0O examples natural language

@ side effects

. Specifications / Types as Specifications?

/0O examples natural language

@ side effects

. Specifications / Types as Specifications?

/0O examples natural language

@ side effects

. Specifications / Types as Specifications?

/0O examples natural language

@ coarse-grained

conversations_members :: String — [String]

. Our Contribution / Semantic Types as Specifications!

/0 examples natural language semantic types

@ side effects @ coarse-grained

B Our Contribution / APlphany

APlphany

A program synthesizer for REST APls guided by semantic types

B APIphany/ Architecture

type mining

OpenAPI"
spec E semantic type
5 construction semantic
execution
traces

library

B APIphany/ Architecture

type mining

OpenAPI "
spec 5 semantic type

construction semantic

library
execution Y semantic type
traces 5 inference

B APIphany/ Architecture

type query

type mining

OpenAPI"
spec 5 semantic type

construction semantic_| type-directed | programs

E library | synthesis '~
execution Y : semantic type
traces 5 inference

[1] Component-based synthesis for complex APIs. Feng et al. POPL17
[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL'20

B APIphany/ Architecture

type query

type mining

OpenAPI"
spec 5 semantic type

S iteile Ml | semantic_ | type-directed | programs Rt ISaiiy | ranked
library | synthesis 12 el |~ \ programs

execution Y : semantic type
traces 5 inference

[1] Component-based synthesis for complex APIs. Feng et al. POPL17
[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL'20

B APIphany/ Architecture

type query

type mining

OpenAPI
spec 5 semantic type

S (ail Il | scmantic | type-directed | programs Rt e sla iz | ranked
library synthesis 1.2 execution & programs

execution Y semantic type
traces 5 inference

[1] Component-based synthesis for complex APIs. Feng et al. POPL17
[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL'20

. Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: ?

. Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: “channel name” — [“user email”]

. Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: “channel name” — [“user email”]

. Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: “channel name” — [“user email”]

Insight 1: object fields as types!

B Type Mining/ Spec Types

User {

Profile {

I

Channel {

I

I

Objects
id String
profile Profile }
emall String
phone String }
creator String
name String
id String }

B Type Mining/ Semantic Types

Objects

, profile :: Profile }

Profile { email 2 String

, phone :: String }
Channel { creator :: String

, hame :: String

, 1d :: String }

B Type Mining/ Semantic Types

Objects

User { id
, profile

Profile { email
, phone

Channel { creator
. name
. id

User.id
Profile }

Profile.email

Profile.phone

Channel.creator
Channel.name
Channel. 1id

. Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: Channel.name — [Profile.email]

B APIphany/ Architecture

type query

type mining

OpenAP]
spec 5 semantic type

S ail Ml | semantic_ | type-directed | programs it ISaiey | ranked
library | synthesis 12 SCViIl | \ Programs

execution Y : semantic type
traces 5 inference

[1] Component-based synthesis for complex APIs. Feng et al. POPL17
[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL'20

. Type Mining / Semantic Type Inference

User {

Profile {

I

Channel {

I

I

Objects
1d User.id
profile Profile }
phone Profile.phone
email Profile.email }
creator Channel.creator
name Channel.name
id Channel.id }

Methods

users_info
conversations_members

conversations list

String — User

String = [String]

[Channel]

. Type Mining / Semantic Type Inference

Objects Methods

User { id .. User.id

Insight 2: mine from traces!

, email :: Profile.email } conversations_members :: String — [String]
Channel { creator :: Channel.creator conversations_list :: [Channel]
, hame :: Channel.name

. id :: Channel.id }

. Type Mining / Semantic Type Inference

Invocation Method Spec Type

users_info(“UJ5RHEG4S") =
{ "id": “UJ5RHEG4S”
, ~Name™: "demo_user” users_info :: String — User
, "profile":

{ "email": “xyz@gmail.com”

. Type Mining / Semantic Type Inference

Invocation Method Spec Type

users_info("UJS5RHEG4S") =
{ "id": "UJSRHEG4S"
, ~hame”: "demo_user” users_info :: String -—)Iﬁiii
, "profile":

{ "email": "xyz@gmail.com"

. Type Mining / Semantic Type Inference

Invocation Method Spec Type

users info("UJ5RHEG4S") =

{l"id": "UJSRHEG4S" | mp

1 L) P]| 1
, 'hame": "demo_user users_info :: String — User

, "profile":

{ "email": "xyz@gmail.com"

. Type Mining / Semantic Type Inference

Invocation Method Spec Type

users info("UJS5RHEG4S™"

"1d": "UJS5RHEG4S"

1 L) P]| 1
, 'hame": "demo_user users_info :: String — User

, "profile":

{ "email": "xyz@gmail.com"

. Type Mining / Semantic Type Inference

Invocation Method Spec Type

users info("UJS5RHEG4S"]
"1d": "UJS5RHEG4S™"

, 'name”: "demo_user users_info :: lIEGE — User

, "profile":

{ "email": "xyz(@gmail.com"

B Type Mining / Semantic Library

User {

Profile {

I

Channel {

I

I

Objects
1d User.id
profile Profile }
phone Profile.phone
email Profile.email }
creator Channel.creator
name Channel.name
id Channel.id }

users_info

convs_members :: IMiENNEINEGE — [REE G]

convs_Tlist

Methods

[Channel]

B Type Mining / Semantic Library

Objects Methods

User { id .. User.id

Are we done?

, email :: Profile.email } @ convs_members :: Channel.id — [User.id]
Channel { creator :: Channel.creator convs_list :: [Channel]
, hame :: Channel.name

. id :: Channel.id }

B Type Mining/ Semantic Library

Objects Methods

User { id :: User.id
, profile :: Profile }

users_info :: User.id - User
Profile 1 phone :: Profile.phone
, email :: Profile.email } @ convs_members :: Channel.id — [User.id]
convs_list :: [Channel]

, hame :: Channel.name
, 1d :: Channel.id } A user |D

B Type Mining/ Semantic Library

Objects Methods

User { id :: User.id
, profile :: Profile }

users_info :: User.id - User
Profile 1 phone :: Profile.phone
, email :: Profile.email } @ convs_members :: Channel.id — [User.id]
convs_list :: [Channel]

, hame :: Channel.name
, 1d :: Channel.id } A user |D

. Type Mining / Semantic Type Inference

Invocation Object Spec Type

{ "jid": "C123" { creator :: Channel.creator

_ "name": “general" , hame :: Channel.name

, "creator": "UJ5RHEG4S" , 1d :: Channel.id }

4

}

. Type Mining / Semantic Type Inference

Invocation Object Spec Type
{ "id": "C123" Channel { creator :: Channel.creator
. "name": “general" , hame :: Channel.name

, id :: Channel.id }

| "creator": "UJSRHEG4S" | mp

4

}

. Type Mining / Semantic Type Inference

Invocation Object Spec Type

_ "name": “general" , hame :: Channel.name

,1 "creator”: "UJS5RHEG4S" , 1d :: Channel.id }

4

}

{ "id": "C123" Channel { creator

B Type Mining / Semantic Library

Objects Methods

User { id :: User.id
, profile :: Profile }

users_info

Profile { phone :: Profile.phone
. email :: Profile.email } convs_members :: IMIERLCEIEGE — [RGO]
Channel { creator :: convs_1list :: [Channel]

, hame :: Channel.name
. id :: Channel.id }

B APIphany/ Architecture

type query

type mining

OpenAP|
spec 5 semantic type

Soliieile | | semantic | type-directed | programs FZ-ierele i | ranked
library “| synthesis 12 execution | EEEANESCCIEINE

LA I se mantic type
traces 5 inference

[1] Component-based synthesis for complex APIs. Feng et al. POPL17
[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL'20

B APIphany/ Architecture

type query

type mining

semantic type

S aidteite s | semantic | type-directed | programs iy | ranked
library | synthesis 12 execution [programs

semantic type
inference

B Type-Directed Synthesis / Program Ranking

Channel.Name — [Profile.Email]

channel_name = {
conversations list()

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

.map(uid = { let u = users_info(user=uid)

return u.profile.email })

h}

Desired Solution

B Type-Directed Synthesis / Program Ranking

Channel.Name — [Profile.Email]

channel_name = { channel_name = {

conversations list() conversations list()

.filter(c = c.name = channel_name) .filter(c = c.name = channel_name)

.map(c = {]| conversations_members(c.id) .map(c = {|let uid = c.creator

.map(uid = { let u = users_info(user=uid) let u = users_info(user=uid)

return u.profile.email }) return u.profile.email })

h}

Desired Solution Candidate #1

B Type-Directed Synthesis / Program Ranking

Channel.Name — [Profile.Email]

channel_name = { channel_name = {

conversations list() conversations list()

.filter(c = c.name = channel_name) .filter(c = c.name = channel_name)

.map(c = {]| conversations_members(c.id) .map(c = {|let uid = c.creator

.map(uid = { let u = users_info(user=uid) let u = users_info(user=uid)

return u.profile.email }) return u.profile.email })

h}

Desired Solution Always returns a singleton array

B Type-Directed Synthesis / Program Ranking

Channel.Name — [Profile.Email]

channel_name = { channel_name = {

conversations_1list() conversations_open()

.filter(c = c.name = channel_name) .filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id) .map(c = { conversations_members(c.id)
.map(uid = { 1let u = users_info(user=uid) .map(uid = { 1let u = users_info(user=uid)
return u.profile.email }) return u.profile.email })

h} h}

Desired Solution Candidate #2

B Type-Directed Synthesis / Program Ranking

Channel.Name — [Profile.Email]

channel_name = { channel_name = {

conversations_1list() conversations_open()

.filter(c = c.name = channel_name) .filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id) .map(c = { conversations_members(c.id)
.map(uid = { 1let u = users_info(user=uid) .map(uid = { 1let u = users_info(user=uid)
return u.profile.email }) return u.profile.email })

h} h}

Desired Solution Always fails

B Type-Directed Synthesis / Program Ranking

channel_name = {

conversations_list()

.filter(c = c.name = channel_name)
.map(c = { let uid = c.creator

let u = users_info(user=uid)
channel_name = {

, , return u.profile.email })
conversations_1list()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id) Candidate #1

.map(uid = { let u = users_info(user=uid)
channel_name = A

return u.profile.email })

conversations_open()

b}

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

Desired Solution . : .
.map(uid = { let u = users_info(user=uid)

return u.profile.email })

h)}

Candidate #2

B Type-Directed Synthesis / Program Ranking

channel_name = {

conversations_list()

.filter(c = c.name = channel_name)

.map(c = { let uvid = c.creator

let u = users_info(user=uid)

channel_name = {
return u.profile.email })

conversations_1list()

Execute programs?

channel _name =

return u.profile.email })

conversations_open()

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)
Desired Solution

.map(uid = { let u = users_info(user=uid)
return u.profile.email })

h)}

Candidate #2

B Program Ranking / Challenges in REST API Execution

B Program Ranking / Challenges in REST API Execution

Service providers set a rate limit

B Program Ranking / Challenges in REST API Execution

Service providers set a rate limit Many API calls have side effects

B Program Ranking / Retrospective Execution

channel_name = {

conversations_list()

.filter(c = c.name = channel_name)
.map(c = { let uid = c.creator

let u = users_info(user=uid)
channel_name = {

, , return u.profile.email })
conversations_1list()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id) Candidate #1

.map(uid = { let u = users_info(user=uid)
channel_name = A

return u.profile.email })

conversations_open()

b}

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

Desired Solution . : .
.map(uid = { let u = users_info(user=uid)

return u.profile.email })

h)}

Candidate #2

B Program Ranking / Retrospective Execution

channel_name = {

conversations_list()

.filter(c = c.name = channel_name)

.map(c = { let uvid = c.creator

let u = users_info(user=uid)

channel_name = {
return u.profile.email })

conversations_1list()

Insight 3: replay from execution traces!

channel _name =

return u.profile.email })
conversations_open()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id)
Desired Solution . : :
.map(uid = { let u = users_info(user=uid)
return u.profile.email })

h)}

Candidate #2

B Program Ranking / Retrospective Execution

Execution traces Program

let uid = channel creator(c)

let u = users info(user=uid)

B Program Ranking / Retrospective Execution

Execution traces Program

.
let uid = channel creator(c)

let u = users info(user=uid)

B Program Ranking / Retrospective Execution

Execution traces Program

let uid = channel creator(c)

let u = users info(user=uid)

B Program Ranking / Retrospective Execution

Execution traces Program

let uid = channel creator(c)

let u = users info(user=uid)

channel_creator

users_info

exact execution

B Program Ranking / Retrospective Execution

Execution traces Program

.
let uid = channel creator(c)

let u = users info(user=uid)

B Program Ranking / Retrospective Execution

Execution traces Program

.
let uid = channel creator(c)

let u = users info(user=uid)

A— -

B Program Ranking / Retrospective Execution

Execution traces Program

.
let uid = channel creator(c)

\

let u = users info(user=uid)

approximate execution

B Type-Directed Synthesis / Program Ranking

channel_name = {

conversations_list()

.filter(c = c.name = channel_name)
.map(c = { let uid = c.creator
let u = users_info(user=uid)

channel_name = {
return u.profile.email })

score:h

conversations_1list()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id) Candidate #1

.map(uid = { let u = users_info(user=uid)

, , channel_name = {
return u.profile.email })

conversations_open()

b}

score:bh0

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

Desired Solution . : .
.map(uid = { let u = users_info(user=uid)

return u.profile.email })

P} score:-1

Candidate #2

B APIphany/ Architecture

type query

type mining

OpenAPI "
spec 5 semantic type

S iteile Ml | semantic_ | type-directed | programs Rt ISaiiy | ranked
library | synthesis 12 el | * \ programs

execution Y semantic type
traces 5 inference

[1] Component-based synthesis for complex APIs. Feng et al. POPL17
[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL'20

B Evaluation / Solved Benchmarks

32
30

25 3 real-world APIs
50 32 benchmarks from StackOverflow and GitHub

15

10

solved benchmarks

0 e L AL S L S S B B S RS S BN B R
0 20 40 60 30 100 120 140

Time (s)

B Evaluation / Solved Benchmarks

32
30

|

)5 Sample benchmark #1:

. Task: Retrieve member emails from a channel name

15

10

solved benchmarks

0 L L I UL A DL R BRI RN LR R AL BN
0 20 40 60 80 100 120 140
Time (s)

B Evaluation / Solved Benchmarks

32
30

|

)5 Sample benchmark #2:

50 Task: Delete the payment source for a customer

15

10

solved benchmarks

0 LA R AL LR R R EEL AN N B L L
0 20 40 60 80 100 120 140
Time (s)

B Evaluation / Solved Benchmarks

32
30
3 o5
o
-
S 20 Solves 29 out of 32
Q . . .
2 151 ¢ within 150s timeout
g 8
© 10
* : —« APIph
54 % phany
i maXx #benchmarks
0
0 20 60 80 100 120 140

Time (s)

B Evaluation / Spec vs Semantic Types

32

30
n
% 25
e
-EC, 20 - Semantic Types
3 —0— SpecTypes
B 1> #| Solves 4 out of 32 Max # of benchmarks
>)
o 101 &
n
H#

5

0

0 20 40 60 30 100 120 140

Time (s)

B Evaluation / RE vs No RE

Desired solutions ranked in top 10

for 12 out of 32 L

Vp)
o
© ’ -
-
i -
c 15 - L
Q
0
H — L
10 m—— \\// RE
: = \\//O RE L
max #benchmarks
O /_I_l-l'l'ﬂﬂ|_|_l-|'|'|'|'l'l'|_l_|-l'l'ﬂ'l'l'|_|_l-l'l-
0 5 10 102 103 104

Rank

B Evaluation / RE vs No RE

37 a
30 ~
25 1
Vp)
o
© 20
-
i -
§ 15 -
S lower than 1000
10 7 —— w/ RE
5 — /O RE
max #benchmarks
O /_l_l-l'l'ﬂﬂ|_|_l-|'|'|'|'l'l'|_l_|-l'l'l'l'l'l'|_|_l-l'l-
0 5 10 102 103 104

Rank

B Evaluation / RE vs No RE

32
30
25 -
0 Desired solutions ranked in top 10
C 20 1
£ for 23 out of 32
c 15 -
Q
i ®)
:|:|: -
10 = \\// RE
: — \\/O RE L
maXx #benchmarks
O /_l_ﬁ'rﬂTl"_i_i-Frﬁ'l'I"_i_Fl'lTﬂ'I"_Fﬁ'l-
0 5 10 10% 103 104

Rank

B APIphany / Architecture

type query

type mining

OpenAPI "
spec 5 semantic type

S iteile Ml | semantic_ | type-directed | programs Rt ISaiiy | ranked
library | synthesis 12 el | * \ programs

execution Y semantic type
traces 5 inference

[1] Component-based synthesis for complex APIs. Feng et al. POPL17
[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL'20

