
Zheng Guo*, David Cao*, Davin Tjong*, Jean Yang†, Cole Schlesinger†, Nadia Polikarpova*

* University of California San Diego

† Akita Software

APIphany: Type-Directed Program Synthesis For REST APIs

2

Overview / Running Example

3

Overview / Running Example

Task: retrieve all member emails from a Slack channel given the channel name

channel_name => {

 conversations_list()

 }

4

Overview / Running Example

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 }

Task: retrieve all member emails from a Slack channel given the channel name

5

Overview / Running Example

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 })}

Task: retrieve all member emails from a Slack channel given the channel name

6

Overview / Running Example

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 })

 })}

Task: retrieve all member emails from a Slack channel given the channel name

7

Overview / Running Example

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

Task: retrieve all member emails from a Slack channel given the channel name

8

Overview / Running Example

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

Task: retrieve all member emails from a Slack channel given the channel name

Can a synthesizer find this program?

9

Overview / Program Synthesis

9

Overview / Program Synthesis

Specifications

9

Overview / Program Synthesis

Specifications

Components

9

Overview / Program Synthesis

Specifications

Components

9

Overview / Program Synthesis

Specifications

Components

Synthesizer

9

Overview / Program Synthesis

Specifications

Components

Synthesizer

9

Overview / Program Synthesis

Specifications

Components

Synthesizer Programs

10

Specifications / What Are Good Specifications For REST APIs?

Specifications

Components

Synthesizer Programs

?

11

Specifications / Examples as Specifications?

I/O examples

12

Specifications / Examples as Specifications?

side effects

I/O examples

13

Specifications / Examples as Specifications?

large objects

side effects

I/O examples

14

Specifications / Examples as Specifications?

large objects

side effects

I/O examples

15

Specifications / NL as Specifications?

large objects

side effects

I/O examples natural language

16

Specifications / NL as Specifications?

too vague

large objects

side effects

I/O examples natural language

17

Specifications / NL as Specifications?

large objects

side effects too vague

I/O examples natural language

18

Specifications / Types as Specifications?

large objects

side effects too vague

I/O examples natural language types

19

Specifications / Types as Specifications?

types

large objects

side effects too vague

I/O examples natural language types

20

Specifications / Types as Specifications?

I/O examples natural language

coarse-grained

conversations_members :: String -> [String]

types

large objects

side effects too vague

21

Our Contribution / Semantic Types as Specifications!

coarse-grained

semantic types

large objects

side effects

I/O examples natural language

too vague

22

Our Contribution / APIphany

APIphany
A program synthesizer for REST APIs guided by semantic types

semantic

library

23

type mining

APIphany / Architecture

OpenAPI
spec

execution
traces

semantic type
construction

1

24

APIphany / Architecture

type mining
OpenAPI

spec

execution
traces

semantic

library

semantic type
construction

1

semantic type
inference

2

25

APIphany / Architecture

type mining
OpenAPI

spec

execution
traces

semantic

library

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

programs

type query

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20

26

APIphany / Architecture

type mining
OpenAPI

spec

execution
traces

semantic

library

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

retrospective
execution

programs ranked
programs

type query

3

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20

semantic

library

27

APIphany / Architecture

type mining
OpenAPI

spec

execution
traces

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

retrospective
execution

programs ranked
programs

type query

3

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20

28

Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: ?

29

Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: “channel name” -> [“user email”]

29

Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: “channel name” -> [“user email”]

How to represent?

30

Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query:

Insight 1: object fields as types!

“channel name” -> [“user email”]

31

Type Mining / Spec Types

Objects

User { id :: String

 , profile :: Profile }

Profile { email :: String

 , phone :: String }

Channel { creator :: String

 , name :: String

 , id :: String }

User { id :: String

 , profile :: Profile }

Profile { email :: String

 , phone :: String }

Channel { creator :: String

 , name :: String

 , id :: String }

32

Type Mining / Semantic Types

Objects

User.id

User { id :: User.id

 , profile :: Profile }

Profile { email :: Profile.email

 , phone :: Profile.email }

Channel { creator :: String

 , name :: String

 , id :: String }

33

Type Mining / Semantic Types

Objects

Channel.creator
Channel.name
Channel.id

Profile.phone
Profile.email

34

Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: Channel.name -> [Profile.email]

semantic

library

35

APIphany / Architecture

type mining
OpenAPI

spec

execution
traces

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

retrospective
execution

programs ranked
programs

type query

3

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20

User { id :: User.id

 , profile :: Profile }

Profile { phone :: Profile.phone

 , email :: Profile.email }

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

36

Type Mining / Semantic Type Inference

users_info :: String -> User

conversations_members :: String -> [String]

conversations_list :: [Channel]

Objects Methods

User { id :: User.id

 , profile :: Profile }

Profile { phone :: Profile.phone

 , email :: Profile.email }

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

37

Type Mining / Semantic Type Inference

users_info :: String -> User

conversations_members :: String -> [String]

conversations_list :: [Channel]

Objects Methods

Insight 2: mine from traces!

38

Type Mining / Semantic Type Inference

Invocation Method Spec Type

users_info(“UJ5RHEG4S”) ==

 { "id": “UJ5RHEG4S”

 , "name": "demo_user"

 , "profile":

 { “email": “xyz@gmail.com”

 …

 }

 }

users_info :: String -> User

39

Type Mining / Semantic Type Inference

Invocation Method Spec Type

users_info("UJ5RHEG4S") ==

 { "id": "UJ5RHEG4S"

 , "name": "demo_user"

 , "profile":

 { "email": "xyz@gmail.com"

 …

 }

 }

users_info :: String -> User

40

Type Mining / Semantic Type Inference

Invocation Method Spec Type

users_info("UJ5RHEG4S") ==

 { "id": "UJ5RHEG4S"

 , "name": "demo_user"

 , "profile":

 { "email": "xyz@gmail.com"

 …

 }

 }

User.id

users_info :: String -> User

41

Type Mining / Semantic Type Inference

Invocation Method Spec Type

users_info("UJ5RHEG4S") ==

 { "id": "UJ5RHEG4S"

 , "name": "demo_user"

 , "profile":

 { "email": "xyz@gmail.com"

 …

 }

 }

User.id

users_info :: String -> User

42

Type Mining / Semantic Type Inference

users_info :: String -> User

Invocation Method Spec Type

users_info("UJ5RHEG4S") ==

 { "id": "UJ5RHEG4S"

 , "name": "demo_user"

 , "profile":

 { "email": "xyz@gmail.com"

 …

 }

 }

User.id

User { id :: User.id

 , profile :: Profile }

Profile { phone :: Profile.phone

 , email :: Profile.email }

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

43

Type Mining / Semantic Library

users_info :: String -> User

convs_members :: String -> [String]

convs_list :: [Channel]

Objects Methods

User.id

Channel.id User.id

User { id :: User.id

 , profile :: Profile }

Profile { phone :: Profile.phone

 , email :: Profile.email }

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

44

Type Mining / Semantic Library

users_info :: String -> User

convs_members :: String -> [String]

convs_list :: [Channel]

Objects Methods

User.id

Channel.id User.id

Are we done?

User { id :: User.id

 , profile :: Profile }

Profile { phone :: Profile.phone

 , email :: Profile.email }

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

45

Type Mining / Semantic Library

users_info :: String -> User

convs_members :: String -> [String]

convs_list :: [Channel]

Objects Methods

User.id

Channel.id User.id

A user ID

User { id :: User.id

 , profile :: Profile }

Profile { phone :: Profile.phone

 , email :: Profile.email }

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

46

Type Mining / Semantic Library

users_info :: String -> User

convs_members :: String -> [String]

convs_list :: [Channel]

Objects Methods

A user ID Traces!

User.id

Channel.id User.id

47

Type Mining / Semantic Type Inference

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

Invocation Object Spec Type

{ "id": "C123"

, "name": “general"

, "creator": "UJ5RHEG4S"

, ...

}

{ "id": "C123"

, "name": “general"

, "creator": "UJ5RHEG4S"

, ...

}

48

Type Mining / Semantic Type Inference

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

Invocation Object Spec Type

User.id

{ "id": "C123"

, "name": “general"

, "creator": "UJ5RHEG4S"

, ...

}

49

Type Mining / Semantic Type Inference

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

Invocation Object Spec Type

User.id

User { id :: User.id

 , profile :: Profile }

Profile { phone :: Profile.phone

 , email :: Profile.email }

Channel { creator :: Channel.creator

 , name :: Channel.name

 , id :: Channel.id }

50

Type Mining / Semantic Library

users_info :: String -> User

convs_members :: String -> [String]

convs_list :: [Channel]

Objects Methods

User.id

User.id

Channel.id User.id

semantic

library

51

APIphany / Architecture

type mining
OpenAPI

spec

execution
traces

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

retrospective
execution

programs ranked
programs

type query

3

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20

52

APIphany / Architecture

semantic

library

type mining
OpenAPI

spec

execution
traces

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

retrospective
execution

programs ranked
programs

type query

3

53

Type-Directed Synthesis / Program Ranking

Channel.Name -> [Profile.Email]

Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

54

Type-Directed Synthesis / Program Ranking

Channel.Name -> [Profile.Email]

Candidate #1Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { let uid = c.creator

 let u = users_info(user=uid)

 return u.profile.email })

 })}

54

Type-Directed Synthesis / Program Ranking

Channel.Name -> [Profile.Email]

Candidate #1Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { let uid = c.creator

 let u = users_info(user=uid)

 return u.profile.email })

 })}

Always returns a singleton array

55

Type-Directed Synthesis / Program Ranking

Channel.Name -> [Profile.Email]

Candidate #2Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_open()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

55

Type-Directed Synthesis / Program Ranking

Channel.Name -> [Profile.Email]

Candidate #2Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_open()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

Always fails

56

Type-Directed Synthesis / Program Ranking

Candidate #2

Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_open()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { let uid = c.creator

 let u = users_info(user=uid)

 return u.profile.email })

 })}

Candidate #1

56

Type-Directed Synthesis / Program Ranking

Candidate #2

Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_open()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { let uid = c.creator

 let u = users_info(user=uid)

 return u.profile.email })

 })}

Candidate #1Execute programs?

57

Program Ranking / Challenges in REST API Execution

57

Program Ranking / Challenges in REST API Execution

Service providers set a rate limit

57

Program Ranking / Challenges in REST API Execution

Many API calls have side effectsService providers set a rate limit

58

Program Ranking / Retrospective Execution

Candidate #2

Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_open()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { let uid = c.creator

 let u = users_info(user=uid)

 return u.profile.email })

 })}

Candidate #1

58

Program Ranking / Retrospective Execution

Candidate #2

Desired Solution

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_open()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { let uid = c.creator

 let u = users_info(user=uid)

 return u.profile.email })

 })}

Candidate #1Insight 3: replay from execution traces!

...

 let uid = channel_creator(c)

 let u = users_info(user=uid)

...

59

Program Ranking / Retrospective Execution

ProgramExecution traces

60

Program Ranking / Retrospective Execution

channel_creator

users_info

channel_creator

Execution traces Program

...

 let uid = channel_creator(c)

 let u = users_info(user=uid)

...

61

Program Ranking / Retrospective Execution

channel_creator

users_info

channel_creator

Execution traces Program

...

 let uid = channel_creator(c)

 let u = users_info(user=uid)

...

62

Program Ranking / Retrospective Execution

channel_creator

channel_creator

Execution traces Program

users_info

exact execution

...

 let uid = channel_creator(c)

 let u = users_info(user=uid)

...

63

Program Ranking / Retrospective Execution

channel_creator

channel_creator

Execution traces Program

...

 let uid = channel_creator(c)

 let u = users_info(user=uid)

...

users_info

64

Program Ranking / Retrospective Execution

channel_creator

users_info

channel_creator

Execution traces Program

...

 let uid = channel_creator(c)

 let u = users_info(user=uid)

...

65

Program Ranking / Retrospective Execution

channel_creator

users_info

channel_creator

Execution traces Program

approximate execution

...

 let uid = channel_creator(c)

 let u = users_info(user=uid)

...

channel_name => {

 conversations_open()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { let uid = c.creator

 let u = users_info(user=uid)

 return u.profile.email })

 })}

channel_name => {

 conversations_list()

 .filter(c => c.name == channel_name)

 .map(c => { conversations_members(c.id)

 .map(uid => { let u = users_info(user=uid)

 return u.profile.email })

 })}

66

Type-Directed Synthesis / Program Ranking

score:50

score:5

score:-1

Candidate #2

Desired Solution

Candidate #1

67

APIphany / Architecture

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20

type mining
OpenAPI

spec

execution
traces

semantic

library

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

retrospective
execution

programs ranked
programs

type query

3

68

Evaluation / Solved Benchmarks

3 real-world APIs

32 benchmarks from StackOverflow and GitHub

69

Evaluation / Solved Benchmarks

Sample benchmark #1:

Task: Retrieve member emails from a channel name

70

Evaluation / Solved Benchmarks

Sample benchmark #2:

Task: Delete the payment source for a customer

71

Evaluation / Solved Benchmarks

Solves 29 out of 32
within 150s timeout

72

Evaluation / Spec vs Semantic Types

Solves 4 out of 32
Spec Types
Semantic Types

Max # of benchmarks

73

Evaluation / RE vs No RE

Desired solutions ranked in top 10
for 12 out of 32

74

Evaluation / RE vs No RE

lower than 1000

75

Evaluation / RE vs No RE

Desired solutions ranked in top 10
for 23 out of 32

76

APIphany / Architecture

type mining
OpenAPI

spec

execution
traces

semantic

library

semantic type
construction

1

type-directed
synthesis 1,2

semantic type
inference

2

retrospective
execution

programs ranked
programs

type query

3

[1] Component-based synthesis for complex APIs. Feng et al. POPL’17

[2] Program synthesis by type-guided abstraction refinement. Guo et al. POPL’20

