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B Overview / Running Example

Slack API: Retrieve all member emails from a slack channel

Asked 5 years, 4 months ago Modified 13 days ago Viewed 24k times

Given the name of a slack channel, is there a way to retrieve a list of emails of all the members in
that channel? | tried looking in the slack api docs but couldn't find the method | need to make

16 this happen (https://api.slack.com/methods).

email channel slack-api slack

Share Improve this question Follow asked Jan 10, 2017 at 8:10

userb5844628
377 ©1 o4 12
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Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {
conversations 1list()

.Ffilter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)
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B Overview / Running Example

Task: retrieve all member emails from a Slack channel given the channel name

channel _name = {
conversations 1list()

Can a synthesizer find this program?

.map(uid = { let u = users_info(user=uid)
return u.profile.email })

b}
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. Specifications / What Are Good Specifications For REST APIs?

Specifcation - 'ﬁ' N E

-; 23 Synthesizer Programs

Components




. Specifications / Examples as Specifications?

/0O examples




. Specifications / Examples as Specifications?

/0O examples

@ side effects




. Specifications / Examples as Specifications?

/0O examples

@ side effects

@ large objects




. Specifications / Examples as Specifications?

/0O examples

@ side effects




. Specifications / NL as Specifications?

/0O examples natural language

@ side effects




. Specifications / NL as Specifications?

/0O examples natural language

@ side effects @ too vague




. Specifications / NL as Specifications?

/0O examples natural language

@ side effects




. Specifications / Types as Specifications?

/0O examples natural language

@ side effects




. Specifications / Types as Specifications?

/0O examples natural language

@ side effects




. Specifications / Types as Specifications?

/0O examples natural language

@ coarse-grained

conversations_members :: String — [String]
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/0 examples natural language semantic types

@ side effects @ coarse-grained




B Our Contribution / APlphany

APlphany

A program synthesizer for REST APls guided by semantic types
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Task: retrieve all member emails from a Slack channel given the channel name

Type query: “channel name” — [“user email”]

Insight 1: object fields as types!




B Type Mining/ Spec Types

User {

Profile {

I

Channel {

I

I

Objects
id String
profile Profile }
emall String
phone String }
creator String
name String
id String }
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Objects

, profile :: Profile }

Profile { email 2 String

, phone :: String }
Channel { creator :: String

, hame :: String

, 1d :: String }




B Type Mining/ Semantic Types

Objects

User { id
, profile

Profile { email
, phone

Channel { creator
. name
. id

User.id
Profile }

Profile.email

Profile.phone

Channel.creator
Channel.name
Channel. 1id




. Specifications / Types as Specification

Task: retrieve all member emails from a Slack channel given the channel name

Type query: Channel.name — [Profile.email]
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. Type Mining / Semantic Type Inference

User {

Profile {

I

Channel {

I

I

Objects
1d User.id
profile Profile }
phone Profile.phone
email Profile.email }
creator Channel.creator
name Channel.name
id Channel.id }

Methods

users_info
conversations_members

conversations list

String — User

String = [String]

[Channel]




. Type Mining / Semantic Type Inference

Objects Methods

User { id .. User.id

Insight 2: mine from traces!

, email :: Profile.email } conversations_members :: String — [String]
Channel { creator :: Channel.creator conversations_list :: [Channel]
, hame :: Channel.name

. id :: Channel.id }
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Invocation Method Spec Type

users_info(“UJ5RHEG4S") =
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, ~Name™: "demo_user” users_info ::  String — User
, "profile":
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. Type Mining / Semantic Type Inference

Invocation Method Spec Type

users info("UJS5RHEG4S"]
"1d": "UJS5RHEG4S™"

, 'name”: "demo_user users_info :: lIEGE — User

, "profile":

{ "email": "xyz(@gmail.com"
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User {

Profile {

I

Channel {

I

I

Objects
1d User.id
profile Profile }
phone Profile.phone
email Profile.email }
creator Channel.creator
name Channel.name
id Channel.id }

users_info

convs_members :: IMiENNEINEGE — [ REE G ]

convs_Tlist

Methods

[Channel]




B Type Mining / Semantic Library

Objects Methods

User { id .. User.id

Are we done?

, email :: Profile.email } @ convs_members :: Channel.id — [ User.id ]
Channel { creator :: Channel.creator convs_list :: [Channel]
, hame :: Channel.name

. id :: Channel.id }




B Type Mining/ Semantic Library

Objects Methods

User { id :: User.id
, profile :: Profile }

users_info :: User.id - User
Profile 1 phone :: Profile.phone
, email :: Profile.email } @ convs_members :: Channel.id — [ User.id ]
convs_list :: [Channel]

, hame :: Channel.name
, 1d :: Channel.id } A user |D




B Type Mining/ Semantic Library

Objects Methods

User { id :: User.id
, profile :: Profile }

users_info :: User.id - User
Profile 1 phone :: Profile.phone
, email :: Profile.email } @ convs_members :: Channel.id — [ User.id ]
convs_list :: [Channel]

, hame :: Channel.name
, 1d :: Channel.id } A user |D




. Type Mining / Semantic Type Inference

Invocation Object Spec Type
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Invocation Object Spec Type

_ "name": “general" , hame :: Channel.name

,1 "creator”: "UJS5RHEG4S" , 1d :: Channel.id }

4

}

{ "id": "C123" Channel { creator




B Type Mining / Semantic Library

Objects Methods

User { id :: User.id
, profile :: Profile }

users_info

Profile { phone :: Profile.phone
. email :: Profile.email } convs_members :: IMIERLCEIEGE — [ RGO ]
Channel { creator :: convs_1list :: [Channel]

, hame :: Channel.name
. id :: Channel.id }
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channel_name = { channel_name = {
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Desired Solution Always returns a singleton array
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Channel.Name — [Profile.Email]

channel_name = { channel_name = {

conversations_1list() conversations_open()
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Channel.Name — [Profile.Email]

channel_name = { channel_name = {

conversations_1list() conversations_open()

.filter(c = c.name = channel_name) .filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id) .map(c = { conversations_members(c.id)
.map(uid = { 1let u = users_info(user=uid) .map(uid = { 1let u = users_info(user=uid)
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channel_name = {

conversations_list()

.filter(c = c.name = channel_name)
.map(c = { let uid = c.creator

let u = users_info(user=uid)
channel_name = {

, , return u.profile.email })
conversations_1list()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id) Candidate #1

.map(uid = { let u = users_info(user=uid)
channel_name = A

return u.profile.email })

conversations_open()

b}

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

Desired Solution . : .
.map(uid = { let u = users_info(user=uid)

return u.profile.email })

h)}

Candidate #2
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channel_name = {

conversations_list()

.filter(c = c.name = channel_name)

.map(c = { let uvid = c.creator

let u = users_info(user=uid)

channel_name = {
return u.profile.email })

conversations_1list()

Execute programs?

channel _name =

return u.profile.email })

conversations_open()

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)
Desired Solution

.map(uid = { let u = users_info(user=uid)
return u.profile.email })

h)}

Candidate #2
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B Program Ranking / Challenges in REST API Execution

Service providers set a rate limit Many API calls have side effects
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channel_name = {

conversations_list()

.filter(c = c.name = channel_name)
.map(c = { let uid = c.creator

let u = users_info(user=uid)
channel_name = {

, , return u.profile.email })
conversations_1list()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id) Candidate #1

.map(uid = { let u = users_info(user=uid)
channel_name = A

return u.profile.email })

conversations_open()

b}

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

Desired Solution . : .
.map(uid = { let u = users_info(user=uid)

return u.profile.email })

h)}

Candidate #2
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channel_name = {

conversations_list()

.filter(c = c.name = channel_name)

.map(c = { let uvid = c.creator

let u = users_info(user=uid)

channel_name = {
return u.profile.email })

conversations_1list()

Insight 3: replay from execution traces!

channel _name =

return u.profile.email })
conversations_open()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id)
Desired Solution . : :
.map(uid = { let u = users_info(user=uid)
return u.profile.email })

h)}

Candidate #2
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Execution traces Program

.
let uid = channel creator(c)

\

let u = users info(user=uid)

approximate execution
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channel_name = {

conversations_list()

.filter(c = c.name = channel_name)
.map(c = { let uid = c.creator
let u = users_info(user=uid)

channel_name = {
return u.profile.email })

score:h

conversations_1list()

.filter(c = c.name = channel_name)
.map(c = { conversations_members(c.id) Candidate #1

.map(uid = { let u = users_info(user=uid)

, , channel_name = {
return u.profile.email })

conversations_open()

b}

score:bh0

.filter(c = c.name = channel_name)

.map(c = { conversations_members(c.id)

Desired Solution . : .
.map(uid = { let u = users_info(user=uid)

return u.profile.email })

P} score:-1

Candidate #2
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